Committee D-2 ON PETROLEUM PRODUCTS AND LUBRICANTS

Chairman: N. DAVID SMITH, North Carolina Dept. of Agric., 2 West Edenton St., P.O. Box 27647, Raleigh, NC 27611 (919-733-3313)

FAX: 919-715-0524

First Vice-Chairman: SUSAN E. LITKA, UOP Research Center, 50 East Algonquin Rd., P.O. Box 5016, Des Plaines, IL 60017-5016

(708-391-3390)

Second Vice-Chairman: KURT H. STRAUSS, 69 Brookside Rd., Portland, ME 04103 (207-773-4380) FAX: 207-775-6214

Secretary: KENNETH O. HENDERSON, Castrol North America, Automotive Div., 240 Centennial Ave., Piscataway, NJ 08854

(908-980-3630) FAX: 908-980-9519

Assistant Secretary: W. JAMES BOVER, Exxon Biomedical Sciences, Inc., Mettlers Rd., CN2350, East Millstone, NJ 08875-2350 (908-873-6318)

FAX: 908-873-6009

Staff Manager: EARL R. SULLIVAN (215-299-5514)

Reply to:

Michael S. Griggs

The Lubrizol Corporation 29400 Lakeland Boulevard Wickliffe, OH 44092-2298

February 10, 2000

To: Members of the Single Cylinder Oil Test Engine (SCOTE) Surveillance Panel and guest attending the January 12, 2000 meeting.

Enclosed are the minutes of the SCOTE Surveillance panel meeting held in San Antonio, Texas. Please forward any corrections or additions to my attention.

Michael S. Griggs

Secretary, SCOTE Surveillance Panel

Michael & Driggs

MEETING MINUTES

SINGLE CYLINDER DIESEL SURVEILLANCE PANEL

HELD JANUARY 12, 2000 PERKINELMER SAN ANTONIO, TEXAS

THIS DOCUMENT IS NOT AN ASTM STANDARD; IT IS UNDER CONSIDERATION WITHIN AN ASTM TECHNICAL COMMITTEE BUT HAS NOT RECEIVED ALL APPROVALS REQUIRED TO BECOME AN ASTM STANDARD. IT SHALL NOT BE REPRODUCED OR CIRCULATED OR QUOTED, IN WHOLE OR IN PART, OUTSIDE OF ASTM COMMITTEE ACTIVITIES EXCEPT WITH THE APPROVAL OF THE CHAIRMAN OF THE COMMITTEE HAVING JURISDICTION AND THE PRESIDENT OF THE SOCIETY. COPYRIGHT ASTM, 100 BARR HARBOR DRIVE, WEST CONSHOHOCKEN, PA 19428-2959. ALL RIGHTS RESERVED

ACTION ITEMS

- 1. Post SCOTE Surveillance Panel minutes on TMC web site- Mike Griggs, Scott Parke
- 2. Look up specs for a 2" to 3" expander and recommend dimensions for the 1Q intake air piping drawing- Stacy Bond
- 3. Obtain specs on the Crane pump described in the 1Q cooling system layout- Stacy Bond
- 4. Check on the hp of the motor used with the Crane pump- Al Hahn
- 5. Advise Al Hahn if 1Q top ring side clearances do not agree with his published specification- Test labs
- 6. Check with Caterpillar to see what parameters are needed to properly identify the 1P/1Q EPROM's- Al Hahn
- 7. Check on IR O₂ methods- Robert Stockwell
- 8. Get Crane pump specs and write an equivalent spec around a lower cost pump-Stacy Bond, Robert Stockwell
- 9. Provide Stacy Bond and Robert Stockwell with Crane pump curves- Al Hahn

10. Reestablish plans to introduce the new 1M-PC liners around the June 2000 timeframe.

1.0 CALL TO ORDER AND MEMBERSHIP CHANGES

Chairman Stacy Bond opened the meeting at 8:30 am. The agenda is attachment 1.

2.0 MEETING MINUTES

- 2.1 The meeting minutes for the December 13, 1999 meeting were approved.
- 2.2 The attendance list is attachment 2
- 2.3 Stacy Bond asked Scott Parke about posting the meeting minutes on the TMC web site. He agreed to do so. The secretary will provide a copy of the minutes to TMC in a pdf file format. The secretary will continue to distribute hardcopies of the minutes until it is shown that the web based minutes can be reliably accessed.

3.0 TEST DEVELOPER'S REPORT ON 10

- 3.1 Al Hahn presented attachment 3 which outlines the 1Q EGR warm-up and operating conditions, required test hardware, installation details and piston/ring measurements.
- 3.2 The 1Q EGR warm-up and operating conditions (attachment 3, page 1/11) shows the performance data using the new EGR heat exchanger. Al Hahn commented that the cooler was a good match and did not require additional baffles. He also pointed out several corrections to the sheet. The inlet air manifold temperature is 70° C vice 75° C for step 5. Step 2 and step 3 exhaust barrel pressure is 120 Kpaa and 155 kPaa respectively. Al Hahn clarified that the inlet air and exhaust barrel pressures are the same during warm-up (step 1 through 4).
- 3.3 There was some discussion on the dual requirement to maintain specific air to orifice and inlet manifold temperatures. Al Hahn explained that Caterpillar controlled the air to orifice temperature at 60° C and observed inlet let manifold temperatures around 70° C. The 70° C ± 3° spec actually corresponds to an expected value in the 67° to 73° range. Mark Sutherland commented that cold shell temperatures for the inlet air barrel could be a problem in achieving the expected 70° C inlet manifold temperature. Stacy Bond suggested that labs plan on having air barrel heaters.
- 3.4 Al Hahn pointed out the CO₂ % at the inlet manifold and exhaust stack needs to be 1.55 and 10.4 %, respectively, to achieve the proper EGR

- rates. Caterpillar's EGR control strategy was to fix the exhaust back pressure and control the intake air pressure over a small range to get the proper EGR rate. Al Hahn mentioned that mass air flow at the proper EGR rate was about 325 kg/hr, but was not a reliable means of control. It can, however, be used as a spot check for EGR rates.
- 3.5 Page 2 of attachment 3 lists the 1Q EGR test hardware. Al Hahn pointed out that the 1Y parts are the same parts as the pre matrix parts except they have tighter specs. He commented that the new ECM 13 degree chip had the coolant temperature limit raised over the current 105° C limit and that more rack was added. The 1Y parts availability is more towards the end of February.
- 3.6 Al Hahn covered details of the EGR heat exchanger installation (attachment 3, pages 3&4/11). He pointed out that the heat exchanger uses an o-ring at the intake air barrel side to allow for float. The tee assembly (item number 3, 1Y 4007) is made of plain steel. Al Hahn commented that he sees no problems with labs upgrading to stainless steel.
- 3.7 Page 5 of attachment 3 shows the proposed location of the CO₂ taps. Mike Griggs expressed a concern the exhaust CO₂ tap location after the restrictor valve might be in a negative pressure region. He explained that his lab has a scavenging blower that maintains a slight vacuum in the exhaust line. Al Hahn replied that Caterpillar handles a moderate negative pressure without problems. After some discussion on potential lab to lab variation, Al Hahn agreed that sampling upstream of the exhaust back pressure valve might be better. He agreed to proceed this way unless problems arise later. The panel agreed to use the ASTM specified probe (see page A3:7 of the 1K/1N procedure for a drawing).
- 3.8 The layout of the intake air piping (page 6 of the attachment) generated quite a bit of discussion. Al Hahn expressed a concern with the discontinuity in pipe diameters resulting from the installation of the Sierra mass air flow meter which has a 2" diameter. The panel agreed that a 20" length of 2" diameter piping should be used upstream of the Sierra meter. Additionally, the 3 tap locations shown downstream of the Sierra meter have been relocated to 10" upstream of the meter. Stacy Bond suggested the use of a 2" to 3" expander immediately after the Sierra meter. He agreed to look up information on the expander and recommend revised dimensions for the piping installation. There was also a brief discussion regarding the need for the Sierra meter. Al Hahn commented that we need to initially ensure lab to lab accuracy in measuring CO₂ before backing off of the Sierra meter requirement. Mike Griggs noted that the Sierra meters need to be calibrated to a tighter standard since the initial calibrations were done to accommodate uncertain operating conditions during Cat 1P

100

development. Scott Parke acknowledged that he has observed a wide range of flow values in the 1P references.

- 3.9 Pages 7 and 8 of attachment 3 detail the coolant system modifications. The 6 items listed on page 7 were discussed in detail. Al Hahn commented that item 1, the 34" hose, should be the same type Aeroquip hose currently used in the cooling system. Robert Stockwell noted that item 6, the flow meter, should have a 50 liter/minute capacity to measure the expected 10 gpm flow. The type of flow meter is not specified, however, it must be able to handle around 10 gpm. Stacy Bond commented that a turbine meter might actually be cheaper that using a Barco venturi meter with the associated instrumentation. Al Hahn commented that the external coolant pump, item 2, has about a 40 gpm capacity with the proper hoses. Following a discussion about the external pump, the panel agreed to consider an equivalent pump that would be readily available with a lower cost. Al Hahn agreed to send Stacy Bond the Crane pump curves along with the motor horsepower. Stacy Bond and Robert Stockwell will work together to write an equivalent pump spec and recommend several low cost pumps.
- 3.10 The panel engaged in a lengthy discussion regarding various parameters and their required values/tolerances. Al Hahn agreed that in certain instances the procedure probably should have referred to expected values rather than exact values with tight tolerances. He did, however, emphasize that inlet air temperature to the orifice is a critical parameter.
- 3.11 Al Hahn requested that panel members advise him if they see different values for top ring side clearance than what is shown on page 9 of attachment 3.
- 3.12 Al Hahn explained that some sludging in the oil filter was observed and that a delta pressure measurement across the oil filter is required. Pressure differentials of 70 kPa and above are a concern. The pressure tap locations shown on page 10 of attachment 3 actually give the pressure drop across the oil cooler and the filter. Al Hahn recommended using a differential pressure transducer.
- 3.13 Al Hahn commented that that Caterpillar is not seeing a need yet to cool the Paratherm in the oil heating system (see page 11, attachment 3). He did acknowledge that the San Antonio labs may have to add a cooling capability to the oil heat system.

4.0 1Q EGR SCOTE TEST REPORT

- 4.1 Al Hahn presented attachment 4 which shows the required test report forms. He and various panel members made the following comments on each form:
 - Form 1- Include TGF and TLHC for now (Al Hahn). Add local start time using 24 hour clock (Scott Parke).
 - Form 2- Add " CO_2 Inlet Man" parameter under controlled parameters and "Oil Filter ΔP " under non-controlled parameters. Initially in the test development, CO_2 needs to be measured every couple of hours. Another report form may be needed for this (Al Hahn). An O_2 sensor could be used in the exhaust for generating an EGR quality index. (Robert Stockwell).
 - Form 3- Al Hahn commented that the ECM EPROM part number will change. Stacy Bond advised that the ECM EPROM number on the sheet is meaningless and that the configuration reported by the ET software is what is important. The ET software gives a 7 digit code to identify the EPROM. Al Hahn agreed to check with Caterpillar to see what parameters are needed to properly identify the EPROM's. He mentioned that some labs will receive new EPROMS and others will be emailed a flash file. Stacy Bond also commented that it is necessary to verify that all labs are using the same ET software.
 - Form 4 & 5A- Additional ratings (TL HYV C, TGF, etc.) are added at the bottom of the form.
 - Form 4A, 5, 7, 9, 11, 12, 14, 15, & 17- No changes
 - Form 6- TGA soot % and IR O_2 added. Al Hahn asked the panel if there was an ASTM method for IR O_2 . Robert Stockwell agreed to check on this. The panel agreed to delete "Oil filter Delta Press" since it is a part of the normal data acquisition system and can be provided as a plot and summary statistics.
 - Form 8- Part numbers and specifications changed.
 - Form 10- Oil filter delta pressure added.

-

- Form 13- Form expanded to accommodate 504 test hours.
- Form 16- No changes, however, it was noted that Phillips was chosen as the fuel supplier.

5.0 1Q EGR MEASUREMENT

- 5.1 Al Hahn explained that Cat uses a model 880A Rosemount gas analyzer for their CO₂ measurements. Their span gases include atmospheric air, 15.1, 3.7 and 0.9 percent CO₂. Cat's actual exhaust stack CO₂ measurements fall in the 10-11% range.
- 5.2 Stacy Bond commented that gas sample preparation and analyzer calibration needs to be covered during lab visits and that it is important that labs be able to meet the 0.05% CO₂ tolerance spec. He also mentioned that he has the ISO document on taking emissions measurements should any lab desire that reference.

6.0 1Q PROCEDURE

tir-

- 6.1 Stacy Bond informed the panel that Ben Weber will continue to update the procedure. He also mentioned that Mike McMillan has assigned Paul Strigner as facilitator for the 1Q.
- The panel agreed that Ben Weber should start on the procedure after some 1Q tests were run and additional experience is gained.

7.0 DEMONSTRATION MATRIX DESIGN

- 7.1 Al Hahn explained that the purpose of the demonstration matrix was to ensure we have a test that can discriminate oils. He commented that the first oil should be TMC 1005, but cautioned the panel that Cat was not absolutely sure about 1005 oil based on only one test. Stacy Bond suggested that 1005 oil be used as the baseline. Al Hahn added that the labs must first show they can run 1005. Currently, Cat is running another 1Q-EGR test on an in house oil ("oil A"). Al Hahn was asked about the 1Q test length and explained that it was driven by the desire for extended oil drain intervals.
- 7.2 Al Hahn asked the panel how many engines would be available at the test labs. The response was as follows:

Lubrizol- 1 initially PerkinElmer- 2 initially Ethyl- 1 initially ALI- 1 initially SWRI- 1 initially

7.3 Al Hahn mentioned that he would try to expedite EGR hardware to the labs and that actual 1Y parts would be available closer to the precision matrix.

- 7.4 There was considerable discussion on the selection of oils for the demonstration matrix. Scott Parke suggested that if Cat could show discrimination on their oil A, then other labs could run oil A. Robert Stockwell added that if oil A is dramatically different than 1005, then the matrix plan would be easier. There was general agreement that 1005 oil needs to be run initially. Ethyl, Lubrizol, PerkinElmer and SWRI committed to running 1005 initially.
- 7.5 Bob Weissman asked the panel about the plan for labs visits. Scott Parke replied that the visits must be done be fore the precision matrix, but could be started after the test has been sufficiently developed. Al Hahn suggested that initial visits be to PerkinElmer and SWRI. Mike Griggs asked if a lab visit checklist would be provided similar to what was done during 1P development. Robert Stockwell suggested that TMC control the checklist. Scott Parke commented that he would need panel input on the contents of the check list.

1Q TIMELINE

- 8.1 Stacy Bond presented attachment 5 which is the timeline for the 1Q test.

 The timeline was modified to reflect new start/finish times for each of the 12 tasks listed.
- 8.2 Stacy Bond commented that at the December HDEOCP meeting he presented the most current 1Q timeline which showed that the development was 6 weeks delayed. He noted that the timeline now is 2 months delayed.

MISCELLANEOUS

Scott Parke informed the panel that he looked into possible lab to lab variations for the oil cooler in temperature (transformed and untransformed data) and found nothing.

NEXT MEETING

The next meeting was not scheduled, however, it is anticipated that the panel will reconvene after labs have some experience with the hardware (at least a month to 6 weeks from this meeting)

Griggs, Michael

From: Bond, Stacy [Stacy_Bond%AR.EGGINC.COM@interlockp.lubrizol.com]

Sent: Monday, December 13, 1999 3:00 PM

To: Al Hahn (E-mail); Brian Lawrence (E-mail); Cooper (E-mail); Mark Sutherland (E-

mail); Mike Griggs (E-mail); Parke (E-mail); Stockwell (E-mail); Tiotze (E-mail); Carlson (E-mail); Jerry Schaus (E-mail); Stephens (E-mail); Charles Passut (E-mail); John Graham (E-mail); Bruce Hillyer (E-mail); Greg Hillman (E-mail); Ralph Cherrillo (E-mail); Steve Kennedy (E-mail); Bob Cambell (E-mail); Bob Weissman (E-mail); Gil

Clark (E-mail); Mark Ferner (E-mail)

Cc: Shoffner, Brent

Subject: SCOTE Surveillance Panel Meeting

SINGLE CYLINDER OIL TEST ENGINE (SCOTE) SURVEILLANCE PANEL MEETING

ANNOUNCEMENT

FROM: Stacy Bond

Surveillance Panel Chairman

PLACE: PerkinElmer (Formally EG&G Automotive Research)

5404 Bandera Road San Antonio, TX 78238

DATE: January 12, 2000

TIME: 8:30 pm to 5:00 pm

1Q DEVELOPMENT

OBJECTIVES FOR THIS MEETING:

Develop a procedure sufficient to run a 1Q EGR test.

Design demonstration oil test matrix.

- 1. Test Developer's Report
- 2. 1Q Installation Requirements

All installation requirements must be complete before this meeting

3. 1Q EGR Measurements

Be ready to present methods of EGR rate measurement

- 4. 1Q Procedure Updates
- 5. Demonstration Matrix Design

Be prepared to recommend oils for the demonstration matrix

Be prepared to volunteer resources for the demonstration matrix

- 6. REVIEW ACTION ITEMS
- 7. SET NEXT MEETING

Atta, ps

SCOTE SURVEILLANCE PANEL Attendance Roster

*** Please indicate any corrections that should be made to members name, address, etc ***

Member		Status	Indicate Presence with Signature	Alternate
Name: Company: Address:	Bond, Stacy PerkinElmer 5404 Bandera Road San Antonio, TX 78238	Mem ber	Stor Bone	
Phone: Fax:	210-523-4604 210-523-4607	4		
Name:	Carlson, Jon			
Company: Address:	Lubrizol Corporation 4801 N.W. Loop 410, Ste. 430 San Antonio, TX 78229			
Phone: Fax:	210-520-8013 210-520-1983			
Name:	Clark, Gil			
Company:	Specified Fuels & Chemicals (Howell)			
Address:	7 W. Square Lake Road, Ste 106 Bloomfield Hills, MI 48302			
Phone:	248-452-5659			
Fax:	248-333-7999			
Name:	Cooper, Mark			
Company: Address:	Oronite Technology Group Chevron Chemical Company 4502 Centerview Ste. 210 San Antonio, TX 78228			
Phone:	210-731-5606			
Fax:	210-731-5699			
Name: Company: Address:	Foerster, Ed EG&G Automotive Research 5404 Bandera Road			
Phone:	San Antonio, TX 78238 210-523-4607			•
Fax:	210-694-0892			
Name: Company: Address:	Griggs, Mike The Lubrizol Corporation 29400 Lakeland Blvd. Wickliffe, OH 44092	V	Morning	
Phone:	440-943-1200 Ext. 2905			

*** Please indicate any corrections that should be made to members name, address, etc ***

Member		Status	Indicate Presence with Signature	Alternate
Name: Company: Address:	Hillman, Gregory E. AutoResearch Lab Inc. 6735 S. Old Harlem Ave. Chicago, IL 60638 (708) 963-4262	V	HILLMAN, ALT @ PRODIZY. NET	
Fax: Name:	(708) 563-0087 Hillyer, Bruce			
Company: Address:	Mobil Technology Co. 600 Billingsport Road Paulsboro, NJ 08066			
Phone:	609-224-2414			
Fax: Name:	609-224-3628 Lewis, John			
Company: Address:	Shell Research Limited P.O. Box 1 Poole Lane INCE (Nr. Chester) Chester CH1 3 SH United Kingdom	Andre		A Company
Phone:				`*
Fax:	011-44-151-373-5888			
Name: Company: Address:	Knight, John Test Engineering, Inc. 12718 Cimarron Path San Antonio, TX 78249-3417	Windu		Yought &
Phone: Fax:	210-690-1958 210-690-1959 jknight@lestery.l	6.00		7
Name: Company: Address:	Lawrence, Brian / / Infineum 4335 West Piedras Dr., Suite 101	. /		
Phone: Fax:	San Antonio, TX 78228 (210) 732-8123 (210) 732-8480		(owner	
Name:	Nycz, David S.			
Company: Address:	Caterpillar, Inc. Box 610 Mossville, IL 61552-0610			
Phone:	309-578-3003			

*** Please indicate any corrections that should be made to members name, address, etc ***

Member		Status	Indicate Presence with Signature	Alternate
Name:	Steinke, Richard E.			
Company:	R.E. Steinke Association			
Address:	P.O. Box 2103			
	Sausalito, CA 94966			
Phone:	415-331-2930	1		
Fax:	415-332-7757			
Name:	Stephen, Carl			
Company:	Ashland, Inc.			
Address:	22nd Front Street			
	Ashland, KY 41101	ŀ		
Phone:	606-329-5198			
Fax:	606-329-3009			
Name:	Sutherland, Mark			
Company:	Ethyl Petroleum Additives, Inc.			
Address:	9901 IH 10 West Suite 800	NV	M	
	San Antonio, TX 78230	1	//	
Phone:	210-558-2818			
Fax:	210-694-0892			
Name:	Strigner, Paul			
Company:	31 Sequin Street			
Address:	Ottawa, Ontario K1J6P2			
	CANADA			
Phone:	2717			
Fax:	MAIL			
Name:	Stockwell, Robert			
Company:	Southwest Research Institute			
Address:	6220 Culebra Road		015	
DI	San Antonio, TX 78228			
Phone:	210-522-5913			
Fax:	210-523-6919			
Name:	Weissman, Bob			
Company: Address:	Ethyl Petroleum Additives, Inc.		bto	
Addiess:	500 Spring Street P.O. Box 2158	μ	100	
	Richmond, VA 23219	"		
Phone:	804-788-5340	- 1		
r none,	004 700 7259			

(Visitors Page) Indicate Presence with Signature Member Status Alternate Name: John Haegelin Company: Perkin Fine-Address: Phone: 310 5234623 Name: James N Chapman Company: PERKILE (mel Address: 5, A. Phone: (210) 523-4649 Fax: Name: Company. Address: Phone: Fax: Name: Company: Address: Phone: Fax: Name: Company: Address: Phone: Fax: Name: Company: Address:

Phone: Fax:

(Visitors Page) Member Status Indicate Presence with Signature Alternate Name: Chris Schmid Company: Lubrizol Address: 29400 Lakeland Blw Wichliffe OH 44012 Phone: 440 943 1200 x 1305 Fax: 440 943 2360 Name: Company: Address: Phone: Fax: Name: Scott PARKE Company: Address: ASTM TMC Phone: Fax: Name: Company: Address: Phone: Fax: Name: Company: Address: Phone: Fax: Name: Company: Address: Phone: Fax:

Nama

1Q/ EGR SCOTE Warm- Up And Operating Conditions

			STEP 1	STEP 2	STEP 3	STEP 4	STEP 5
PARAMETER	UNITS	TOL	5 Min	5 Min	5 Min	10 Min	60 Min
Speed	RPM	+/- 3	1000	1000	1400	1800	1800
Power	kW		ldle	10	28	51	65
Torque	Nm	(a) +/- 5	•	100	175	270	340
Fuel Rate	g/ min	(b) +/- 1		45	95	192	240
B.S.F.C.	g/ kW-hr		- % \$ 4	-	220	220	215
Fuel Timing	BTC		13	13	13	13	13
Fuel Rack Pos.	mm		2.6	3.8	6	8.6	10.3
Humidity	g/kg	+/- 1.7		-	-	•	17.8
TEMPERATURES	DEG C						
Fuel Into Head		+/- 3	~31	~32	~33	~36	42
Coolant Into Jug				~55	101	101	101
Coolant From Head		+/- 3		57	105	105	105
Oil To Cooler				-	93	102	124
Oil Manifold		+/- 3		•	92	101	120
Oil Fr Extern. Heater				-	97	104	~110
Air To Orifice		+/- 3		55	60	60	60
Inlet Air Manifold		+/- 3		40	45	68	78 70
Exhaust Manifold			~120	300	430	590	~600
EGR H/E - Exh To				48	249	390	~480
- Exh From	- W . N.	+/- 5		45	80	135	135
- Coolant In				57	98	99	~99
- Coolant Out				57	101	102	~102
PRESSURES	kPa					en e	
Fuel From Head		+/- 20	275	275	275	275	275
Coolant Into Jug		(c)	~44	~44	90	100	~100
Oil Manifold		+/- 20	415	415	415	415	415
Air To Orifice (abs)				120	155	250	295
Inlet Air Barrel (abs)		+/- 1	120	120	155	250	292
Exhaust Barrel (abs)		+/- 1	•	180/20	145/55	250	298
EGR H/E - Exh From (abs)							297
- Water Out						150	150
Oil Filter Delta Pressure					30	36	44
Crankcase			t in the formula of the first o				~.2
FLOWS							
% EGR Flow						300-800-90-70	*** ***********
Coolant	U min	+/- 2	~40	40	~55	~75	~75
Blowby	L/ min					-30	-30
Air	kg/ hr				165	230	325
EGR H/E Coolant Flow	GPM				10.1	10.7	10.7
Oil Scale Cart Reading	Grams		**************************************				
EMISSONS					100		
CO2 % Inlet Manif	%	+/05		-	_	\$ \$\$\$\$*:<	1.55
CO2 % Exh Stack					1		

Note:

- (a) Engine controlled to Torque Spec for Steps #2, #3, #4 and 5 minutes of Step #5
- (b) Engine controlled to Fuel Rate for last 55 minutes of Step #5
- (c) Air Pressure at coolant tower controlled to 35 kPa

Ramp Up Conditions Between Warm- Up Steps

Torque Speed Inlet Air Press Exhaust Press Inlet Air Temp At 5 minutes (beginning at step #2)

At 10 minutes (beginning at step #3)

At 10 minutes (beginning at step #3)

At 10 minutes (beginning at step #3)

At 0 minutes (at start of test)

20 Nm/ min

100 rpm/ min

12 kPa/ min

12 kPa/ min

5 deg C/ min

1Q - EGR Test Hardware

MAR

	Pre Matrix (Dec)	Ind Matrix (Feb)
Piston Crown	145-6744	1Y4016
Piston Skirt	132-6663	1Y4015
Top Ring	132-6662	1Y4014
2nd Ring	139-9126	1Y4013
Oil Ring	7E2990	1Y4012
Cooling Jet	145-6860	1Y4011
(use 1P jet aim fixture)	1Y3980	1Y3980
New ECM 13 dea Chip	154-8353	154-8353

						1Y-4008
ZOLE	ITEM	⊖ _{QTY}	MEAS UNIT	PART NO.		NAME
L				PARTS LIS	T	
	-1	1		1Y-4005	HO	JSING.
	-2			1Y-4017	CO	OLER
	3	1	•	1Y-4007	TE	E-AS.
	4	1	•	140-5978	NII	PPLE
	5	.1	÷, ••	1Y-4002	AD	APTER
	6	2		1Y-4003	GAS	SKET
	7	1		8F-6711	SE	AL
	8	16 -		DS-1594	BOI	
}	9	-16	-	5M-2894	WAS	SHER
	10	4		8T-6764	PLI	JG
	11	5		8T-6765	PLI	JG

Note: CO2 Exh. Stack Tap Location After Exhaust Restrictor Valve

% EGR = % CO2 Inlet Man - % CO2 Air To Orifice % CO2 Exh. Stack - % CO2 Air To Orifice

1Q - EGR SCOTE TEST PROCEDURE

A4. INTAKE AIR PIPING

Hereoguip hose

- (1) 3/4 dia silicone hose
- (2) External coolant pump

Crane Deming Salem, Ohio Model 3062, 1, 1/2, X, 6, 1750 rpm

Model 3062 1 1/2 X 6 1750 rpm Type D-1

- (3) EGR Cooler Arrange 1Y4008
- (4) Hand Valve
- (5) Fill Pipe
- (6) Flow Meter (large meter with 20 lpm min capacity)

1Q - EGR SCOTE TEST PROCEDURE

1Q-EGR SCOTE TEST PROCEDURE

PISTON AND RING SPECIFICATIONS

Piston: Skirt p/n 194015, Crown p/n 194016

Rings: Top p/n 174014, Intermediate p/n 194013 Oil p/n 1Y 4012

	TOP RING*	INTERMEDIATE RING*	OIL CONTROL RING*
Width of groove in piston for piston ring (new)		3.07±0.01mm	4.03 ± 0.01mm
Thickness of piston ring (new)		2.985±.015mm	3.975±0.015 mm
Side Clearance between groove and piston ring (new)	0.090-127mm	0.060-0./10 mm	0.030-0.080 mm
End gap clearance between end of ring (new) installed in 137.160mm diameter gage	o. 350-0. 550 mm	0.754-0.906 mm	0.400 - 0.750 mm

^{*}NOTE: This engine uses keystone style piston rings and grooves in the piston. The piston ring lands are also elliptically ground; therefore, measure ring side clearance as follows:

- a. Assemble piston ring on the piston with "UP" side toward the top of the piston.
- b. Install piston and ring in a 137.60mm diameter ring gage or modified 'slotted' liner.
- c. Push piston and ring until ring to be measured is at the top of the gage. Keep the piston in the center of the gage.
- d. Measure the side clearance with a feeler gage at both major (90° from the centerline of the pin bore) and minor diameters. Each measurement should be within specification shown.

Install the oil control ring with gap in the spring 180° away from the gap in the ring.

1Q-EGR SCOTE TEST PROCEDURE

Oil Filter Delta Pressure Locations

RIGHT SIDE VIEW

1Y3681 FILTER GP - ENGINE OIL

1Q - EGR SCOTE TEST PROCEDURE

A6. OIL SYSTEM

1Q-EGR SCOTE TEST PROCEDURE Att 4, pg 1/19

FORM 1 TEST REPORT SUMMARY

LAB: <i>LAB</i>	EOT DATE: DTCOMP	END TIME:	EOTTIME	METHOD:	METHOD	
STAND: STAND	RUN NUMBER: ENRUN					
FORMULATION/ST	AND CODE: FORM					
OILCODE (or CMIR): OILCODE/CMIR					

START DATE: DTSTRT	TOTAL TEST LENGTH:	TESTLEN	TMC OIL TYPE: AIND	
LAB INTERNAL OIL CODE: LABO	CODE	ENGINE S	SERIAL NUMBER: ENGSN	

	CORRECTION EFFECTIVE DATE	WDP	TGC/ TGF	TLC/	OIL CONSUMPTION g/h	TRANSFORMED OIL CONSUMPTION	BOTOC g/h	TRANSFORMED EOTOC
UNADJUSTED LAB RATING		WD	TGC	TLC	ос	ОСТ	EOTOC	ETOCT
INDUSTRY CORRECTION (IF ANY)	DATEGF	WDCF	TGCCF	TLCCF		OCTOF		ETOGTCF
SUBTOTAL		WDCOR	TGCCOR	TLCCOR		OCTCOR		ETOCTCOR
LAB SEVERITY ADJUSTMENT B (IF ANY)	DATESA	WDSA	TGCSA	TLCSA		OCTSA		ETOCTSA
TOTAL		WDFNL	TGCFNL	TLCFNL	OCFNL	OCTFNL	EOTOCFNL	ETOCTFNL

	EFFECTIVE DATE	WDP	TGC	TLC	OIL CONSUMPTION 9/h	TRANSFORMED OIL CONSUMPTION	EOTOC g/h	TRANSFORMED EOTOC
TEST TARGET MEAN ^A	EFFOATE	WDM	TGCM	TLCM		ОСТМ		EOTOCTM
TEST TARGET STD ^A	EFFDATE	WDS	TGCS	TLCS		octs		EOTOCTS
API CATEGORY PASS LIMIT	DTCEFF	WDPL	TGCPL	TLCPL	OCPL		EOTOCPL	

	REFEREE LAB	WDP	TGC	TLC	
REFEREE RATINGS A	RRLAB	RRWD	RRTGC	RRTLC	

	ТОР	INT. 1	OIL	PISTON CROWN	PISTON SKIRT	LINER
RING LOSS OF SIDE CLEARANCE (mm)	LSCTOP	LSCINT1	LSCOIL			
RING END GAP INCREASE (mm)	RINGGTI	RINGGI11	RINGGOI			
IS THE RING STUCK?	STUCKTOP	STUCKIN1	STUCKOIL			
SCUFFED AREA %	SCUFFTOP	SCUFFIN1	SCUFFOIL	SCUFCRON	SCUFSKRT	SCUFFLIN
AVERAGE WEAR STEP (mm)						AWEARST
% BORE POLISH						BOREPOL

Notes:

AReference oil tests or as requested by test sponsor BNon-reference oil tests only

1Q-EGR SCOTE TEST PROCEDURE Att 4, pg 2/19

FORM 2 OPERATIONAL SUMMARY

LAB: LAB	EOT DATE	: DTCOMP		END TIME:	EOTTIME	METHOD:	METHOD	
STAND: STAN	VD.	RUN NUMBER:	ENRUN					
FORMULATION/ST	AND CODE:	FORM						
OILCODE (or CMIR):	OILCOD	E/CMIR						

1	OPERATING	QUALITY	EOT		PROCESS		10	TAL DATA PO	NTS
	PARAMETER	THRESHOLD	INDEX	UNITS	TARGET	AVERAGE	SAMPLES A	BQD B	OVER/UNDER
	ENGINE SPEED	0.00	QRPM	r/min	1800	ARPM	NRPM	BRPM	ORPM
	FUEL FLOW	0.00	QFFLO	g/min	240	AFFLO	NFFLO	BFFLO	OFFLO
	HUMIDITY	0.00	анимір	g/kg	17.8	AHUMID	NHUMID	BHUMID	ОНИМІД
	COOLANT FLOW	0.00	QCOLFLO	L/min	75	ACOLFLO	NCOLFLO	BCOLFLO	OCOLFLO
ERS	TEMPERATURE								
MET	COOLANT OUT	0.00	acolout	°C	105	ACOLOUT	NCOLOUT	BCOLOUT	OCOLOUT
PARAMETER	OIL TO MANIFOLD	0.00	QOMANTM	°c	120	AOMANTMP	NOMANTMP	BOMANTMP	OOMANTMI
	INLET AIR MANIFOLD	0.00	QINAIRT	°C	7570	AINAIRT	NINAIRT	BINAIRT	OINAIRT
CONTROLLED	FUEL INTO HEAD	0.00	QFUELTMP	°C	42	AFUELTMP	NFUELTMP	BFUELTMP	OFUELTMP
ONT	PRESSURES								
٥	OIL TO MANIFOLD	0.00	QOMANPR	kPa	415	AOMANPR	NOMANPR	BOMANPR	OOMANPR
	INLET AIR (ABSOLUTE)	0.00	QINAIRP	kPa	2902	AINAIRP	NINAIRP	BINAIRP	OINAIRP
	EXHAUST (ABSOLUTE)	0.00	QEBP	kPa	298	AEBP	NEBP	BEBP	OEBP
	FUEL FROM HEAD	0.00	QFUELPR	kPa	275	AFUELPR	NFUELPR	BFUELPR	OFUELPR
	CO2 % INLET MAN				1.55				
	OPERATING			111176	PROCESS	11/22.00		AL DATA POIN	
	PARAMETER	Pr. 27		UNITS	TYPICAL RANGE		SAMPLES^	BODB	OVERAUNDER ^C
	INTAKE AIR FLOW(reference te	st only)		kg/h	312-378	AAIRFLO		an aldi	
j.	POWER								
				kW	65-70	APWR	NPWR	BPWR	OPWR
	TORQUE			kW	65-70 330-350	APWR ATORQUE	NPWR NTORQUE	BPWR BTORQUE	OPWR OTORQUE
rers									
AMETERS	TORQUE			Nm	330-350	ATORQUE	NTORQUE	BTORQUE	OTORQUE
PARAMETERS	TORQUE			Nm	330-350	ATORQUE ABLOBY	NTORQUE	BTORQUE	OTORQUE
LED PARAMETERS	TORQUE BLOWBY TEMPERATURE			Nm L/min	330-350 20-56	ATORQUE ABLOBY	NTORQUE NBLOBY	BTORQUE BBLOBY	OTORQUE OBLOBY
OLLED	TORQUE BLOWBY TEMPERATURE COOLANT IN			Nm L/min	330-350 20-56 100-102	ATORQUE ABLOBY ACOLIN ACOLDT	NTORQUE NBLOBY NCOLIN	BTORQUE BBLOBY BCOLIN	OTORQUE OBLOBY OCOLIN
OLLED	TORQUE BLOWBY TEMPERATURE COOLANT IN COOLANT DELTA T			Nm L/min °C °C	330-350 20-56 100-102 2-6	ATORQUE ABLOBY ACOLIN ACOLDT	NTORQUE NBLOBY NCOLIN NCOLDT	BTORQUE BBLOBY BCOLIN BCOLDT	OTORQUE OBLOBY OCOLIN OCOLDT
OLLED	TORQUE BLOWBY TEMPERATURE COOLANT IN COOLANT DELTA T OIL COOLER IN			Nm L/min °C °C	330-350 20-56 100-102 2-6 120-124	ATORQUE ABLOBY ACOLIN ACOLDT AOCOOLIN AHEATOIL	NTORQUE NBLOBY NCOLIN NCOLDT NOCOOLIN	BTORQUE BBLOBY BCOLIN BCOLDT BOCOOLIN	OTORQUE OBLOBY OCOLIN OCOLDT OOCOOLIN
	TORQUE BLOWBY TEMPERATURE COOLANT IN COOLANT DELTA T OIL COOLER IN HEATING OIL			Nm L/min °C °C °C	330-350 20-56 100-102 2-6 120-124 185 meximum	ATORQUE ABLOBY ACOLIN ACOLDT AOCOOLIN AHEATOIL	NTORQUE NBLOBY NCOLIN NCOLDT NOCOOLIN NHEATOIL	BTORQUE BBLOBY BCOLIN BCOLDT BOCOOLIN BHEATOIL	OTORQUE OBLOBY OCOLIN OCOLDT OOCOOLIN OHEATOIL
OLLED	TORQUE BLOWBY TEMPERATURE COOLANT IN COOLANT DELTA T OIL COOLER IN HEATING OIL EXHAUST			Nm L/min °C °C °C	330-350 20-56 100-102 2-6 120-124 185 meximum	ATORQUE ABLOBY ACOLIN ACOLDT AOCOOLIN AHEATOIL	NTORQUE NBLOBY NCOLIN NCOLDT NOCOOLIN NHEATOIL	BTORQUE BBLOBY BCOLIN BCOLDT BOCOOLIN BHEATOIL	OTORQUE OBLOBY OCOLIN OCOLDT OOCOOLIN OHEATOIL

- A Total number of data points taken as determined from test length and procedural specified sampling rate
- B Number of Bad Quality Data points not used in the calculation of the statistical measures
- C Number of points clipped by over/under range limits of the statistical measures
- D Gathered from 1P Matrix Test data

1Q-EGR SCOTE TEST PROCEDURE Att 4, pg 3/19

FORM 3 ASSEMBLY MEASUREMENTS AND PARTS RECORD

LAB: LAB	EOT DA	TE: DTCOMP	END TIME:	EOTTIME	METHOD:	METHOD	
STAND: STA	IND	RUN NUMBER: ENRUN					
FORMULATION	N/STAND	CODE: FORM					
OILCODE:	OILCO	DE/CMIR					

ASSEMBLY ME	ASUREMENTS AND PARTS RECORD
INJECTOR SETTING (GO / NO-GO)	INJSET
WAS TIMING INITIALIZED? (YES/NO)	TINIT
PISTON/HEAD CLEARANCE mm	PISTONCL
CAM GEAR BACKLASH mm	CAMLASH
DESIRED FUEL TIMING BTC	FUELTIM
INTAKE VALVE OPEN *ATC	INVALOPN
INJECTOR PLUNGER LIFT mm @ 72°	PLUNLIFT
INTAKE VALVE LIFT mm @ 456°	INLIFT
EXHAUST VALVE LIFT mm @ 247°	EXLIFT

	PART NUMBER	R	SERIAL NUMBER		DATE CODE		INSPECTION COD	Œ
LINER	LINERPN	A	LINERSN	A	LINERDC	В		
TOP RING	TOPPN	С	TOPSN	E				
INTERMEDIATE RING	INTPN	С	INTSN	E				
OIL RING	OILPN	С	OILSN	E				
PISTON CROWN	CROWNPN	D	CROWNSN	D	CROWNDC	F	CROWNIC	2000
PISTON SKIRT	SKIRTPN	Н	SKIRTSN	I				
FUEL INJECTOR	NOZZLEPN	J	NOZZLESN	ĸ				
ECM EPROM	ECMPN				ECMDC	******		
PISTON COOLING JET	PTUBEPN		PTUBESN					

- A On liner O.D.
- B On liner O.D. (NNAN)
- C On box label
- D On top of piston

- E On paper envelope containing the ring
- F Number below "E" located on piston top
- G Number above "E" located on piston top
- H On bottom surface of skirt rim
- I On bottom surface under pin bore
- J On top surface of plunger
- K On top surface of plunger -6 digits

1Q - EGR SCOTE TEST PROCEDURE

FORM 4 PISTON RATING SUMMARY

TI	ST IDENTIFICA	ATION	LAB:	LAB	ΕO	T DAT	E:DTC)MP	END	TIME: EO				o; STAI		RUN	#;	UN M	THOD	:METH	OD
F(RMULATION/S	STAND	CODE	: FORM	1					01	LCO	DE/CN	IIR: <i>01</i>	LCODE/C	MIR						
I	ST FUEL: TEST			FUEL	BATCH	: FUEL	BTID		DATE	RATED: DT	RAT	E	RATE	R INIT	IALS: F	INIT	VERIF	ED BY	VRINI	Τ	
	LAST STAND REF	ERENCE	D/	TE CO	MPLET	ED: <i>LF</i>	RDTCOI	ИP	STAND) #: STAN			UN #:	LRENI			OIL COI				
				WD	Р		TGC		T	LC	OIL (a/h	NUTION	TRAN	STOMED SUMPTI	OIL		TOC 1/h	T	RANSFO EOTO	
L	AST REF. THIS	STAN	D L	RWD		LRT	GC		LRTLC		LR	OC		LRO	CT		LREOT	OC	LR	RETOCT	r
	INDUSTRY AV	ERAGE	LI	RAWD		LRA	TGC		LRATL	С				LRA	ОСТ				LR	AETO	CT
	INDUSTRY	STD	U	RSWD		LRS	TGC		LRSTL	C				LRS	OCT				LR	SETOC	: 7
7	TAL PISTON F	RATING	S SUN	MARY	,																
		GROO	VES			LAND	S					GROO	VE	LAND	S			OIL C	OOLING	G UN	IDER
	DEP.	NO	. 1	NC). 2	NO). 1	NO	0. 2	DEP.		NC	. 3	NC). 3	N	O. 4	GAL	LERY	CR	OWN
	FACTOR	A,%	DEM.	A.%	DEM.	A.%	DEM.	A.%	DEM.	FACTOR	R	A,%	DEM.	A.%	DEM.	A.%	DEM.	A.%	DEM.	A,%	DEM
;	110 10	GIHCA	GIHCD	G2HCA	G2HCD	LIHÇA	LIHCD	L2HCA	LZHCD	[G3HCA	G3HCD	LIHCA	LIHED	L4HCA	L4HCD	T	T	T	T
١	HC - 1.0 MC - 0.5	GIMCA	GIMCD	1	GZNCD	E//ICA		121102	1 27/62			GSMCA	GSMCD		2,,00	247.02	24,165	-	 	 	·
	LC25	GILCA	GILCD		GZLCD	LILCA	LILCD	LZLCA	LZLCD		h	GSLCA	G3LCD	LJICA	LICO	L4LCA	L4LCD	OGLCA	OGLCD	UCLCA	UCLCI
)	LC25	0.104		1	1	1	1	L	1		ŀ				1	I	.1	1	I	.1	1
ĺ	TOTAL	GIACTOT	GIDCTO	GZACTO	TG2OCTO	LIACTO	LIDCTOT	LZACTO	LIDCTOT		4	SACTOT	GSOCTOT	SACTOT	LIDCTOL	АСТОТ	LADCTOR	ACTOT	овостот	CACTOT	COCTO
									•												
-	8 - 9	GIV9A	G1V9D	G2V9A	G2V9D	LIV9A	LIV9D	L2V9A	L2V90								1				T
	7 - 7.9	GIV8A	G1V8D	G2V8A	G2V8D	LIVBA	LIVEU	LZVBA	LZVBU	7.5		9 3 V7 5A	G3V760	L3V76A	L3V760	L4V76A	L4V760	2GV76A	0GV750	UC V76A	UC V780
	6 - 6.9	GIV7A	G1V70	G2V7A	G2V7D	LIV7A	LIV7D	L2V7A	L2V70								1		1		
/	5 - 5.9	GIV6A	GIV6D	G2V6A	G2V6D	LIV6A	LIV6D	L2V6A	L2V6D												
١	4 - 4.9	GIV6A	G1V60	02V6A	G2V6D	LIV6A	LIVED	L2V6A	L2V60	4.5	k	3 3V46A	G3V460	L3V46A	L3V460	L4V46A	L4V46D	DBV46A	0GV45D	UCV46A	UCV460
1	3 - 3.9	GIV4A	G1V40	G2V4A	G2V4D	LIVEA	LIV4D	L2V4A	L2V4D								1	l			
1	2 - 2.9	GIV3A	G1V30	G2V3A	G2V3D	LIV3A	LIV3D	L2V3A	L2V30												
3	1 - 1.9	GIV2A	GIV2D	G2V2A	G2V20	LIV2A	L1V2D	L2V2A	L2V2D	1.5	k	G 3V1&A	G3V15D	L3VIBA	L3V150	4V16A	L4V16D	DOVISA	0GV15D	UCVIBA	UCVIE
1	>0 - 0.9	GIVIA	GIVID	GZVIA	G2V1D	LIVIA	LIVID	L2VIA	L2V1D												
	CLEAN 6	VCLNA	0	SACTNA	0	IVCLNA	0	2VCLNA	0	CLEAN	1 4	3VCLNA	0	JVCLNA	0 4	VCLNA	0	GVCLNA	0	LCVCLNA	0
	TOTAL 6	AVTOT	GIDVTO	2AVTOT	G2OVTOT I	IAVTOT	LIDVTOT	2AVTOT	LZDVTOT		4	AVTOT	G 3 DVTOT	SAVTOT	LIOVIOT	AVTOT	LADVTOR	CAVTOT	ρσοντοπ	CAVTOT	COVTO
1/	ATING	GIU	IWD .	G2U	JWD	L10	UWD	L2U	JWD			G3L	IWD	L3U	IWD	L41	UWD	OG	JWD	UC	UWD
0	CATION FACTOR	2	2	ļ;	3		1		3				0		0		60		.5	<u> </u>	1
N	D RATING	G11	WD		WD	L11	WD	·	WD			G3	WD		WD	L4	WD		WD		WD
_	WDP				HYV C	<u>; </u>			rGF				2GF		·			'L FL			
-	UNWEIGHT			TL	r			1	TGC				2GC					IN CR	OWN	C	

1Q - EGR SCOTE TEST PROCEDURE Form 4A PISTON RATING WORKSHEET

Att 4, pg 5/19

LAB: LAB EOT DA	TE: DTCOMP	END TIME:	EOTTIME	METHOD:	METHOD
STAND: STAND	RUN NUMBER: ENRUN				
FORMULATION/STAND	CODE: FORM				
OILCODE/CMIR: OILC	CODE/CMIR				

RATEWSIM

1Q-EGR SCOTE TEST PROCEDURE

FORM 5 SUPPLEMENTAL PISTON DEPOSITS (GROOVE SIDES AND RINGS)

LAB:	LAB		EOT DATE	: DTO	СОМР	,		END TI	ME:	EOTTIN	1E ME	THOD:	METHOL)	
STAND:	STA	ND	RU	N NUMBI	ER:	ENRUN						7.71 THE STATE OF			
FORMULATION	N/STA	ND CO	DDE: FORM	1											
OILCODE/CMIF	₹:		OILCODE	'CMIR											
				CARBON						VAR	NISH				
DEPOSIT TYPE			нс	мс	LC	8 - 9	7 - 7.9	6 - 6.9	5 - 5.9	4 - 4.9	3 - 3.9	2 - 2.9	1 - 1.9	>0 - 0.9	CLEAN
	1	T	GITHCA	GITMCA	GITLCA	GIT9A	G1T8A	G1T7A	G1T6A	G1T5A	G1T4A	G1T3A	G1T2A	GITIA	GIICLNA
	•	В	G18HCA	GIBMCA	GIBLCA	G189A	G188A	G187A	G186A	G185A	G1B4A	G183A	G182A	GIBIA	GIBCLNA
GROOVE TOP		Т	G2THCA	G2TMCA	G2TLCA	G279A	G2T8A	G2T7A	G276A	G276A	G2T4A	G2T3A	G2T2A	G2T1A	G2TCLNA
AND	2	B	G28HCA	GZBMCA	G2BLCA	G289A	G288A	G287A	G286A	G286A	G284A	G283A	G282A	G281A	G2BCLNA
воттом															
	3	Т	GSTHCA	GSTMCA	GJTLCA	G3T9A	GST&A	G3T7A	G376A	G3T6A	G374A	GJTJA	GJT2A	GJTIA	GJTCLNA
		В	G3BHCA	G3BMCA	G3BLCA	G389A	G388A	G3B7A	G386A	G38 5 A	G384A	G383A	G382A	G381A	G3BCLNA
)r>**********	Т	RITHCA	RITMCA	RITLCA	RIT9A	RITBA	RITTA	RIT6A	R175A	RIT4A	RIT3A	RIT2A	RITIA	RITCLNA
	1	В В	RIBHCA	RIBMCA	RIBLCA	R189A	R1B8A	R187A	R1B6A	R185A	R184A	R183A	RIBZA	RIBIA	RIBCLNA
	•	ВК	RIBKHCA	RIBKMCA	RIBKLCA	R18K9A	RIBKBA	RIBK7A	RIBKGA	R1BK6A	R18K4A	RIBKSA	R18K2A	RIBKIA	RIBKCLNA
		-	R2THCA	RZTMCA	RZTLCA	R2T9A	R2T8A	R2T7A	R2T6A	20754	-0744	22724	20724		
TOP BOTTOM	_		RZBHCA	RZBMCA	R2BLCA	R289A	R218A	R217A	R286A	R2T&A R28&A	R2T4A R2B4A	R2T3A R2B3A	R2T2A R282A	R2T1A R281A	R2TCLNA R2BCLNA
AND BACK OF RINGS	2	B BK	RZBKHCA	RZBKMCA	R2BKLCA	R2BK9A	R2BKBA	R2BK7A	R2BK6A	R2BK5A	R2BK4A	R2BK3A	R2BK2A	R2BK IA	R2BKCLNA
		T	RITHCA	RITMCA	R3TLCA	R3T9A	R3T8A	R3T7A	R3T6A	R3T6A	R3T4A	RSTSA	R3T2A	RITIA	RITCLNA
	3	В	R3BHCA	RJBMCA	R3BLCA	R3B9A	R3BBA	R3B7A	R3B6A	R386A	R3B4A	R383A	R3B2A	R38 I.A	RSBCLNA
		BK	R3BKHCA	RJBKMCA	R3BKLCA	R3BK9A	R3BKBA	R3BK7A	RJBK6A	R38K6A	R3BK4A	R3BK3A	R38K2A	R3BK IA	RJBKCLNA
ADDITIONAL D	EDOS	IT R. C	ONDITION	DATINGS											
PISTON CROW				na mid											
	IA		CROWNAD	· · · · · · · · · · · · · · · · · · ·	-										
PISTON SKIRT			SKIRTAD										-		
RINGS	<u></u>		RINGSAD					1					· · · · · · · · · · · · · · · · · · ·		
LINER			LINERAD												

Att 4, P9 6/19

1Q - EGR SCOTE TEST PROCEDURE

FORM 5A REFEREE RATING

TEST IDENTIF	ICATION						
LAB:	LAB	EOT DATE:	DTCOMP	END TIME:	EOTTIME	METHOD:	METHOD
STAND:	STAND	RUN #:	ENRUN				
FORMULATIO	N/STAND CODE:	FORM					
OILCODE/CMI	R:	OILCODE/CMIR					
REFEREE RAT	ING INFORMATION						
COMPANY:	RRLAB	RATING NUMBER:	RRNO	DATE RATED:	RRDATE	RATER:	RRINIT

			GRO	OVES		T	ΙΔ	NDS			GRO	OVES	1	1.0	NDS		hu 6	0011110	1	10.50
٦	DEP.	N/	0. 1). 2	NI/	0. 1	,	0. 2	555			-					ooling Lery	1 .	NDER OWN
1 -	ACTOR	A,%	DEM.	A,%	DEM.	A,%	DEM.	A,%	·	DEP. FACTOR	A,%	O. 3 DEM.	A,%	DEM.	A,%	0. 4 DEM.	A,%	· · · · · · · · · · · · · · · · · · ·	A,%	1
323	HC-1.0	RRG I HCA	RRG1HCD	RRGZHCA	RRG2HCD	ARLIHCA	RRL1HCD	RRL2HCA	RRL2HCD		RAGSHCA	RRG3HCD	RRL3HCA	RRL3HCD	RRL4HCA	RRL4HCD				
_	MC-0.5	RRGIMCA	RRGIMCD								RRG3MC	RRG3MCD								
	LC25	ARG 1LCA	RRG1LCD	RRG2LCA	RRG2LCD	RALILCA	AALILCD	RRL2LCA	RRL2LCD		RAGILCA	RAGILCO	RRL3LCA	RRL3LCD	RRL4LCA	RRL4LCD	RROGLCA	RROGLCD	ARUCLCA	RRUC
	TOTAL	GIACTO	RG1DCTO1	G2ACTO	RG2DCT01	LIACTO	ALIDETOI	RLZACTO	RL2DCTOT		34	l		RL3DCTOT	RL4ACTO	RL4DCTOT	ОСАСТО	подостот	UCACTO	RUCDO
3	8 - 9	RRG I V9A	RRG1V9D	RRG2V9A	RRG2V9D	RRL1 V9A	RALIVOD	RRL2V9A	RRL2V9D											
	7 - 7.9	RRG I VBA	RRG1V8D	RRG2V8A	RRG2V8D	RRL 1 VBA	RRL1V8D	RRL2V8A	RRL2V8D	7.5	RRG3V75	RAG3V750	RRL3V754	RAL3V76D	RRL4V76A	RRL4V750	ROGV75	RROGV7 6 D	RUCV75	RRUC
	6 - 6.9	RRG I V7A	RRG 1 V7D	RRG2V7A	RRG2V7D	RRL 1 V7A	RRL1V7D	RRL2V7A	RRL2V7D											ļ
	5 - 5.9	RRG1V6A	RRG I V6D	RRG2V6A	RRG2V6D	RRL I V6A	RRL1V6D	RRL2V6A	RRL2V6D								 			
	4 - 4.9	RRG I V6A	RRG 1 V6D	ARG2V5A	RRG2V60	RRL I V&A	RRL1V6D	RAL2V6A	RRL2V6D	4.5	RG3V46	RRG3V460	RRL3V46A	RRL3V46D	RRL4V45A	RAL4V45D	ROGV45	RAOGV46D	RUCV46	RRUC
	3 - 3.9	RRG I V4A	RRG I V4D	RRG2V4A	RRG2V4D	RRL I V4A	RRL1V4D	RRL2V4A	RRL2V4D											
	2 - 2.9	RRG I V3A	RRG1V3D	RAG2V3A	RRG2V3D	RRL I V3A	RRLIV3D	RRL2V3A	RAL2V3D							······································				
_	1 - 1.9	RRG I V2A	RRG1V2D	RRG2V2A	RRG2V2D	RRL1V2A	RRL1V2D	RRL2V2A	RRL2V2D	1.5	RG3V15	RAG3V160	RAL3V164	RRL3V16D	RRL4V164	RRLAV16D	ROGV16	RROGV160	AUCV16	RRUC
	>0 - 0.9	RRGIVIA	RRG1V1D	ARG2V1A	RRG2V1D	RRL1V1A	RRLIVID	RRL2V1A	RRL2V1D				İ							
_	CLEAN	AGIVCL	0	RAG2VCL	0	RRL1VCLA	0	RRL2VCLA	0		RAGSVCL	0	RRLSVCLA	0	RAL4VCLA	0	ROGVCL	0	RUCVCL	0
2	TOTAL	GIAVTO	RG1DVTOT	IG2AVTO	RG2DVTOT	KLIAVTO	ALIDVTOT	HLZAVTO	RL2DVTOT		GSAVTO	RG30VTO1	RISAVTO	RISOVTOT	NAAVTO	RIADVTOT	OGAVIO	ROGDVTOT	UCAVTO	BUCO
1	TING	DDC	1UWD	PPC'	2UWD	DDI.	L	DDI '	2UWD		1	3UWD	 	RUWD						
-						TAL	4				-					IUWD		GUWD	RRU	LUW
_	ATION FACTOR		2		3	 -	<u> </u>		3			20		20		30	0	.5		1
_	RATING	RRG	1WD		2WD		1WD		2WD		RRG	3WD	RRL	3WD	RRL	4WD		GWD		CWL
÷	VDP				IYV C	<u>. </u>			rgf mag			2GF						AKED		
J	NWEIGHT			TL	C			- 1	TGC			2GC				U	N CR	OWN (C	

1Q-EGR SCOTE TEST PROCEDURE

Form 6

Engine Endurance Data

·	P25 (1 (15) 25 25 15 (15) (15)	<u> </u>					·麗·西·尼尔哥 医医蒙克德斯斯特别氏病
Test Identification							
Lab		COT Date		End Time	The state of the s	Method	
Stand		Run Number	7.5				
Formulation/ Stand	Code	ALLEY OF THE			a na kata mana a kata a ka		
Oil Code/ CMIR						77.	
Test Fuel	Set .	1.0		Fuel Batch			A 150000
			2004 A				

Oil Analysis	New	36	72	108	144	180	216	252	288	324	360	396	432	468	504
Visc @ 100 C	X	Х	94.0	The state of	Х			Х			Х		Х	1000	X
Visc @ 40 C	X	Х		Annual Supplier Control	Х			X			Х		Х		X
TBN D4739	X	Х			Х			Х			Х		Х		X
TAN D664	X	Х			Х			X			Х		Х		X
Fuel Dilution %		Х							1		Х				Х
TGA Soot %		Х			Х			X	Maria.		Х		Х		X
Wear Metals (ppm)															
Fe	X	Х			Х			X			X		Х		Χ
Al	X	X			X			X			Х		X		Х
Si	X	Х			Х		,	Χ			Х		Х		Х
Cu	X	X			Х			X			Х		Х		Х
Cr	X	Х			Х			Χ			X		Х		Х
Pb	X	X			Х			Х			Х		Х		Χ
IR O2	X	X			X			X			X		X		X
Blowby (L/min)		X	X	Х	X	Х	Х	X	Х	X	X	Х	X	Х	Х
Oil Cons (g/hr)		Х	X	Х	·X	Х	Х	X	X	X	Х	Х	Х	Х	X
Oil Cons r2		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Fuel Position(mm)		Х						Х			Χ				Χ
Oil Filter Delta Press		X	X	X	Х	X	X	Х	X	X	X	Х	Х	Х	Х

Delete NOTE:

(1) Total Oil In System 5800 +/-50 grams

(2)Refill oil scale cart to full level every 36 hours. Take oil samples, as shown, before adding oil.

1Q - EGR SCOTE TEST PROCEDURE FORM 7

Att 4, pg 9/19

DOWNTIME SUMMARY

LAB:	LAB E	OT DATE. DTCOMP		END TIME:	EOTTIME	METHOD:	METHOD	
STAND	: STAND	RUN NUMBER:	ENRUN					
FORMU	LATION/S	TAND CODE: : FORM						
OILCO	DE/CMIR:	OILCODE/CMIR						

Number of	Downtime	Occurrences	DWNOCR					
TEST HOURS	DATE	DOWNTIME			REASON	IS		
DOWNHOO1	DDATH001	DTIMHOO1	DREAH001					
							,	
		TOTLDOWN		TOTAL	DOWNTIME (125 HR. MAX)		

Comments		
Number of Comment Lines	тотсом	
ОСОМНОО1	· · · · · · · · · · · · · · · · · · ·	
軟		
	n dominina i i jun	
1981 유수선 17년 1년 - 1		
	The state of the s	

1Q - EGR SCOTE TEST PROCEDURE FORM 8

RING MEASUREMENTS

LAB: LAB EOT DA	TE: DTCOMP	END TIME: EOTTI	ME METHOD:	METHOD			
STAND: STAND	RUN NUMBER: ENRUN						
FORMULATION/STAND	FORMULATION/STAND CODE: FORM						
OILCODE/CMIR: OILC	ODE/CMIR						

ALL RING MEASUREMENTS ARE MADE USING METRIC FEELER GAGES

RING GAPS (mm)	174014 TOP	1 V4013 INTERMEDIATE	174012 OIL
SPECIFICATIONS	0.350550 mm	0.754906 mm	a400750mm
PRE-TEST	RINGGTE	RINGGI1E	RINGGOE
POST-TEST	RINGGTO	RINGGI10	RINGGOO
INCREASE	RINGGTI	RINGGI1I	RINGGOI

	RING SIDE	А	В	С	D	AVG.	MIN.	SPECIFICATION
	PRE-TEST	SIDETPE1	SIDETPE2	SIDETPE3	SIDETPE4	ASIDETPE	ISIDETPE	0.090-127mm
ТОР	POST-TEST	SIDETPO1	SIDETPO2	SIDETP03	SIDETP04	ASIDETPO	ISIDETPO	
	LSC	LSCT1	LSCT2	LSCT3	LSCT4	LSCTOP	ILSCT	
	PRE-TEST	SIDE1 PE1	SIDE1PE2	SIDE1 PE3	SIDE1PE4	ASIDE1 PE	ISIDE1 PE	0.060110mm
INT.	POST-TEST	SIDE1 PO1	SIDE1PO2	SIDE1PO3	SIDE1P04	ASIDE1PO	ISIDE1 PO	
	LSC	LSC/1	LSC/2	LSC/3	LSC/4	LSCINT1	ILSCINT	
	PRE-TEST	SIDEOPE1	SIDEOPE2	SIDEOPE3	SIDEOPE4	ASIDEOPE	ISIDEOPE	0.030-D80mm
OIL	POST-TEST	SIDEOPO1	SIDEOPO2	SIDEOPO3	SIDEOPO4	ASIDEOPO	ISIDEOPO	
	LSC	LSCO1	LSCO2	LSC03	LSCO4	LSCOIL	ILSCO	

• NOTES:

- * 1. WRITE "STUCK" IN PLACE OF DIMENSION WHEN APPLICABLE
 - 2. WRITE "<0.03 mm" FOR CLEARANCE WHEN APPLICABLE.
 - 3. WRITE ">" BEFORE CALCULATED DECREASE OR AVERAGE DECREASE VALUES THAT INCORPORATE A " $< 0.03 \, \text{mm}$ " IN CALCULATION.
 - 4 LSC = LOSS OF SIDE CLEARANCE
 - 5. MIN: OIL RING MINIMUM SIDE CLEARANCE IS MEASURED 360° AROUND PISTON.

1Q - EGR SCOTE TEST PROCEDURE FORM 9

LINER MEASUREMENTS

LAB: LAB EOT DATE: DTCOMP END TIME: EOTTIME METHOD: METHOD

STAND: STAND RUN NUMBER: ENRUN

FORMULATION/STAND CODE: FORM

	LINER SURFACE FINISH	(MICROMETER)	
DISTANCE FROM TOP	TRANSVERSE	LONGITUDINAL	AVERAGE
130 mm	BBLFINT1	BBLFINL1	BBLFINA 1
50 mm	BBLFINT2	BBLFINL2	BBLFINA2
25 mm	BBLFINT3	BBLFINL3	BBLFINA3
		TOTAL AVERAGE	BBLFIN

%LINER BORE POLISH - GRID (ADD T/AT VALUES FROM GRID)				
THRUST BOREPT				
ANTI-THRUST	BOREPAT			
TOTAL	BOREPOL			

	BORE MEASUREMENT (* FORE TEST - DIAMETER		
BORE HEIGHT	LONGITUDINAL	TRANSVERSE	OUT OF ROUND
250 mm	BBLONG1	BBTRAN1	OOR1
210 mm	BBLONG2	BBTRAN2	OOR2
170 mm	BBLONG3	BBTRAN3	OOR3
130 mm	BBLONG4	BBTRAN4	OOR4 -
50 mm	BBLONG5	BBTRAN5	OOR5
25 mm	BBLONG6	BBTRAN6	OOR6
15 mm	BBLONG7	BBTRAN7	OOR7
APER (0.050 max)	TAPRLONG	TAPRTRAN	

AFTER TEST - (SURFACE PROFILE)

	LONG	TUDINAL	TRANSVERSE			
	FRONT	REAR	Т	AT		
WEAR STEP @ 13 mm	AWEARLF	AWEARLR	AWEARTT	AWEARTAT		

**

OILCODE/CMIR: OILCODE/CMIR

1Q-EGR SCOTE TEST PROCEDURE

FORM 10
CHARACTERISTICS OF THE DATA ACQUISITION SYSTEM

LAB: LAB	EOT DA	TE: DTCOMP		END TIME:	EOTTIME	METHOD:	METHOD
STAND: STA	ND	RUN NUMBER:	ENRUN				
FORMULATION	/STAND	CODE: FORM					
OILCODE/CMIR	OILCO	DE/CMIR					

PARAMETER (1)	SENSING DEVICE (2)	CALIBRATION FREQUENCY (3)	RECORD DEVICE (4)	OBSERVATION FREQUENCY (5)	RECORD FREQUENCY (6)	LOG FREQUENCY (7)	SYSTEM RESPONSE (8)
OPERATION CONDITIONS					0.00		0.00
ENGINE SPEED (R\min)	RPMSENS	RPMCALF	RPMRECD	RPMOBSF	RPMRECF	RPMLOGF	RPMSYSR
ENGINE POWER (kW)	PWASENS	PWRCALF	PWRRECD	PWROBSF	PWRRECF	PWRLOGF	PWASTSA
FUEL FLOW (a/min)	FFLOSENS	FFLOCALF	FFLORECD	FFLOOBSF	FFLORECF	FFLOLOGF	FFLOSYSR
HUMIDITY (g/kg)	HUMSENS	HUMGALF	HUMRECD	HUMUBSF	HUMRECF	HUMLOGF	HUMSYSR
TEMPERATURES (°C)							
COOLANT OUT	COTSENS	COTCALF	COTRECD	COTOBSF	COTRECF	COTLOGF	COTSYSA
COOLANT IN	CONSENS	CONCALF	CONRECD	CONOBSF	CONRECF	CONLOGF	CONSYSR
OIL TO MANIFOLD	OBRGSENS	OBRGCALF	OBRGRECD	OBRGOBSF	OBRGRECF	OBRGLOGF	OBRGSYSR
OIL COOLER IN	OCOLSENS	OCOLCALF	OCOLRECD	OCOLOBSF	OCOLRECF	OCOLLOGF	OCOLSYSA
INLET AIR	AIRTSENS	AIRTCALF	AIRTRECD	AIRTOBSF	AIRTRECF	AIRTLOGF	AIRTSYSR
EXHAUST	EXTSENS	EXTCALF	EXTRECD	EXTOBSF	EXTRECF	EXTLOGF	EXTSYSA
FUEL TO HEAD	FUELSENS	FUELCALF	FUELRECD	FUELOBSF	FUELRECF	FUELLOGF	FUELSYSR
PRESSURES (kPa)							
OIL TO MANIFOLD	OBRPSENS	OBRPCALF	OBRPRECD	OBRPOBSE	OBRPRECF	OBRPLOGF	OBRPSYSR
INLET AIR	AIRPSENS	AIRPCALF	AIRPRECD	AIRPOBSF	AIRPRECF	AIRPL OGF	AIRPSYSR
EXHAUST	EXPSENS	EXPCALF	EXPRECD	EXPOBSF	EXPRECF	EXPLOGF	EXPSYSR
FUEL FROM HEAD	FFILSCNS	FRICALF	FFILRECD	FFILOBSF	FFILREGF	FFILLOGF	FFILSYSH
CRANKCASE	CCVSENS	CCVCALF	CCVRECD	CCVOBSF	CCVRECF	CCVLOGF	CCVSYSR
FLOWS (L/min)							
BLOWBY	BLBYSENS	BLBYCALF	BLBYRECD	BLBYOBSF	BLBYRECF	BLBYLOGF	BLBYSYSR
COOLANT FLOW	GFLWSENS	GPLWGALF	CPLYMEGO	GPEWOBSP	GFLWARGF	CFLWLOGF	CFLWSYSR

LEGEND. Add Oil FILTER 19

LEGEND— AND UT PICTER 21

11) OPERATING PARAMETER
(2) THE TYPE OF DEVICE USED TO MEASURE TEMPERATURE, PRESSURE OR FLOW
(3) FREQUENCY AT WHICH THE MEASUREMENT SYSTEM IS CALIBRATED
(4) THE TYPE OF DEVICE WHERE DATA IS RECORDED

LG - HANDLOG SHEET
DL - AUTOMATIC DATA LOGGER
SC - STRIP CHART RECORDER
CM - COMPUTER, USING MANUAL DATA ENTRY
C/D - COMPUTER, USING MARUAL DATA ENTRY

¹⁶⁾ DATA AREA OBSERVED BUT ONLY RECORDED IF OFF SPEC.

⁽B) DATA AREA OBSERVED BUT ONLY RECORDED IF OFF SPEC.

(P) DATA AREA RECORDED BUT ARE NOT RETAINED AT EOT

(7) DATA ARE LOGGED AS PERMANENT RECORD, NOTE SPECIFY IF:

SS - SNAPSHOT TAKEN AT SPECIFIED FREQUENCY

AGYX AVERAGE OF X DATA POINTS AT SPECIFIED FREQUENCY

(B) TIME FOR THE OUTPUT TO REACH 63.2% OF FINAL VALUE FOR STEP CHANGE AT INPUT

1Q-EGR SCOTE TEST PROCEDURE Att 4, P3 13/19 FORM 11 ENGINE OPERATIONAL DATA PLOTS

LAB:	LAB	EOT DAT	E: DTCOMP		END TIME:	EOTTIME	METHOD	METHOD
STAND	STA	ND	RUN NUMBER:	ENRUN				
FORMULA	TION/S	TAND CO	E: FORM					
OILCOD	E/CMIP	: OILC	ODE/CMIR				-	

1Q-EGR SCOTE TEST PROCEDURE Att 4, pg 14/19 FORM 12

TORQUE AND EXHAUST TEMPERATURE HISTORY

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
LAB: LAB	EOT DATE: DTCOMP	END TIME:	EOTTIME	METHOD: METHOD	
STAND: STA	ND RUN NUMBER:	ENRUN			
FORMULATION/S	STAND CODE: FORM				
OILCODE/CMIR:	OILCODE/CMIR				

Data From Last 10 Tests

Test No.

Avg. Exh Temp.°C

Avg.Eng.Torque Nm

1	2	3	4	5	6	7	8	9	10
AEXHHOO1	AEXHHOO2	А <i>Е</i> ХНН003	AEXHHOO4	А <i>ЕХНН0</i> 05	AEXHHOO6	AEXHHOO7	AEXHHOO8	AEXHHOO9	AEXHH010
ATORHO01	ATORHOOZ	ATORHOO3	ATORHO04	ATORHOO5	ATORHOO6	ATORHO07	ATORHO08	ATORHOOS	ATORH010

1Q - EGR SCOTE TEST PROCEDURE FORM 13 OIL CONSUMPTION PLOT

1Q - EGR SCOTE TEST PROCEDURE Form 14 PISTON, RING AND LINER PHOTOGRAPHS

3 16/19

LAB: LAB	LAB: LAB EOT DATE: DTCOMP				METHOD:	METHOD		
STAND: STAN	ID .	RUN NUMBER: ENRUN						
FORMULATION/S	STAND	CODE: FORM						
OILCODE/CMIR: OILCODE/CMIR								

PRUM

1Q - EGR SCOTE TEST PROCEDURE Att 4, pg /7/19 FORM 15 SEVERITY ADJUSTMENT HISTORY

LAB: L	AB	EOT DAT	TE: DTCOMP		END TIME:	EOTTIME	METHOD:	METHOD
STAND: STAND		D D	RUN NUMBER: ENR					
FORMULAT	rion/	STAND C	ODE: FORM				· · · · · · · · · · · · · · · · · · ·	
OILCODE/C	MIR.	OILCO	DDE/CMIR					

OILCO	DE/CMIR:	OILCO	DE/CMIR		-						
USAGE	DATES	w	DP	TO	3C	T	LC	TRANS	ORMED		ORMED
START	TIME	Zi	S.A.								
DTSTROO1	DTTMR001	WDZIRO01	WDSAR001	TGZIRO01	TGSAR001	TLZIRO01	TLSAR001	OCZIRO01	OCSAR001	ETZIRO01	ETSAR001
											·
,					-						
										-	
			·							·	
Ž.											
*											
								l			

1Q - EGR SCOTE TEST PROCEDURE Att 4, pg 18/19 FUEL BATCH ANALYSIS

LAB: LAB EOT DATE: DTCOMP	END TIME:	EOTTIME	METHOD:	METHOD
STAND: STAND RUN NUMBER: ENRUN				
FORMULATION/STAND CODE: FORM				
OILCODE/CMIR: OILCODE/CMIR				

FUELIM

42

1Q - EGR SCOTE TEST PROCEDURE Form 17 TMC CONTROL CHART ANALYSIS Att 4, pg 19/19

(Reference Oil Tests Only)

LAB: LAB	EOT DATE: DTCOMP			END TIME:	EOTTIME	METHOD:	METHOD
STAND: STA	ND	RUN NUMBER:	ENRUN				
FORMULATION	I/STAND	CODE: FORM					
OILCODE/CMIR	: OILC	ODE/CMIR					

Att S, pg 1

* Contingent on HDEOCP Meeting Date