Cummins Surveillance Panel Teleconference Meeting Minutes April 2, 2015

The teleconference convened at 10:30 a.m. EDT

Attendance:

Afton - Bob Campbell, Christian Porter ChevronOronite - Mark Cooper, Jim Rutherford Cummins - Dan Nyman Infineum - Elisa Santos, Pat Fetterman Intertek - Jim Moritz, Mey Dewey Lubrizol - Kevin O'Malley, Nick Secue, Michael Conrad SwRI - Jim McCord, Perry Grosch, Jim Carroll, Martin Thompson TEI - Zack Bishop TMC - Jeff Clark, Sean Moyer Volvo - Greg Shank

New ISB Hardware:

This teleconference is part of the ongoing review of the introduction of new ISB hardware (batch K cams, batch D tappets). On the prior call, Kevin O'Malley was requested to use a modeling approach that would consider hardware batches (tappets and cams), reference oil blends, and fuel batches as part of the analysis. Kevin reviewed his work (attached) for the panel. His general comments are shown on slide number 3, his summaries and correction factor options are shown on slides 28 - 32. The panel was grateful for Kevin's efforts. Elisa Santos also showed some work which helped explain/reduce the collinearity that Kevin noted in his presentation.

After discussion, *it was moved (McCord, Fetterman) to use a multiplicative correction factor of 1.0 for ATWL for tests run on batch K cams and batch D tappets.* This motion passed without objection (TEI, TMC waive). The TMC will issue an information letter and an ltms update accordingly.

For ACSW, it was moved (McCord, Fetterman) to use an additive correction factor of -11.3 for tests run on batch K cams and batch D tappets. This is shown as Option 1 (slide 30) on Kevin's presentation. This motion passed without objection (TEI, TMC waive). The TMC will issue an information letter and an Itms update accordingly.

There was further discussion regarding the Itms standard deviation for ACSW. Action was tabled until more data is available and reviewed by the panel.

The panel will continue to monitor the use of this hardware and the correction factors in case they need to be revised in the future.


Next Meeting:

The next meeting will be held at the call of the chair, once more data is available. The call ended at 12:30 pm.

Cummins ISB Industry Severity

April 2014 Kevin O'Malley Statistician The Lubrizol Corporation

Data Used in Analysis

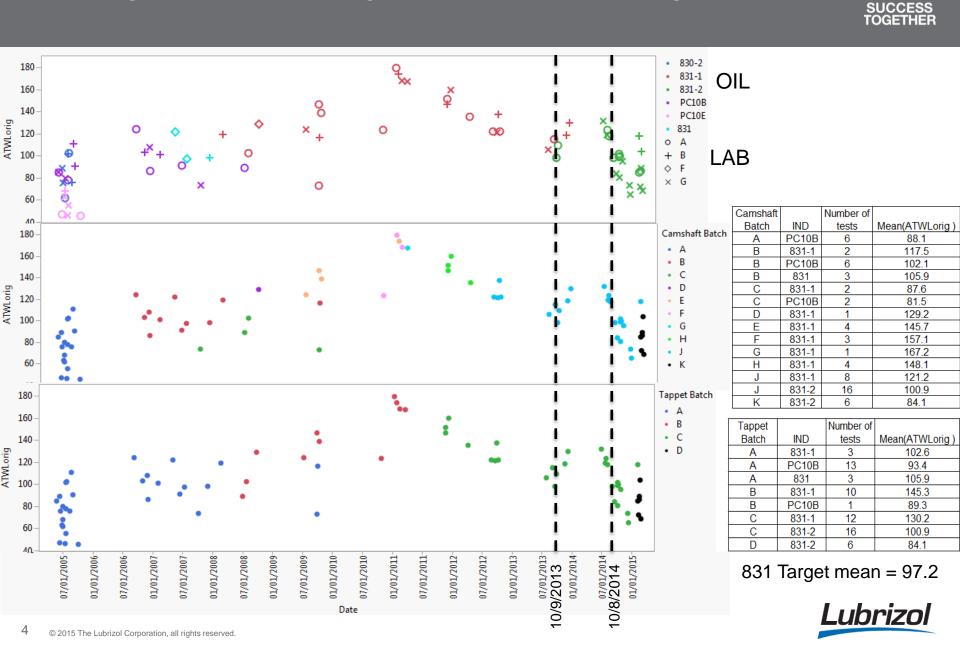
Analysis includes chart="Y" data prior to 1/29/2015

+

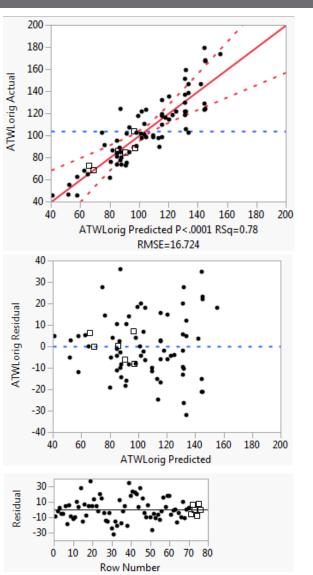
Additional tests (since 1/29/2015):

TESTKEY	LTMSLAB	IND	LTMSAPP	ENGINE	ENHOURS	VAL	LTMSDATE	CHART	ENKIT	COM1	COM2	COM3	COM4	TAPBID	CRHBID	CAMBID
98396-ISB	В	831-2	3	46560892	4900	LC	20150129	N	ISB-749	SEVERE	ACSW	FAILED	INJ295HR	С	D	J
98397-ISB	В	831-2	3	46562869	5253	XC	20150206	Ν	ISB-765	ABORTED	EGR VLV	FAILURE	HIGH SOO	С	D	J
106237-ISB	В	831-2	3	46560892	5250	AC	20150226	Y	ISB-750					С	D	J
104605-ISB	Α	831-2	3	46560643	7486	PC	20150227	N	ISB-824	NEW CAM	NEW TAP			D	D	K
105876-ISB	G	831-2	4	46561166	13355	XH	20150303	N	ISB-823	ENGINE	HW FAIL	OIL LOSS		D	K	J
105875-ISB	G	831-2	3	46560027	3457	PC	20150305	N	ISB-822	NEW CAM	NEW TAP			D	D	K
104606-ISB	Α	831-2	4	49342610	3150	PC	20150307	Y	ISB-825	NEW CAM	NEW TAP			D	D	K
106978-ISB	G	831-2	1	46560896	7910	AG	20150308	N	ISB-826	NEW CAM	NEW TAP		HARDWARE	D	D	K
106854-ISB	В	831-2	3	46562869	5280	PC	20150313	N	ISB-821	NEW CAM	HARDWARE			D	D	K
106979-ISB	G	831-2	5	57339278	6950	PC	20150315	N	ISB-827	NEW CAM	NEW TAP			D	D	K

Included in graphs/analyses


General Comments

General comments before we get into the analysis:


- 1. It is NOT possible to simultaneously estimate any combination of Fuel Batch, Engine, Tappet Batch or Camshaft Batch effects
 - 1. The inability for models to separate these effects is a result of how the levels of these variables have been introduced in these data
- 2. Differences in fuel batches and engines may also influence oil and lab/stand differences
- 3. Thus, we must keep in mind that models and their resulting estimates (including correction factor calculations) may be influenced by these effects
- 4. More details regarding the relationship between these factors can be found in Appendix A
- 5. Prior presentation details have been moved to appendices:
 - 1. Appendix B: LTMS & Hardware Details
 - 2. Appendix C: Average Camshaft Wear graphs
 - 3. Appendix D: Average Tappet Weight Loss graphs

Average Tappet Weight Loss (ATWLorig):

5

I Source LTMSLAB LTMSAPP[LTMS IND	Mean Obsen	re Adj Mean Squ of Respo vations (Nparm 3 10 5	DF 3 10 5	m Wgt Sun Squa 4259.6 5536.5 8731.4	0.6 16. 103 s) n of ares 5519 5345 1348	7669 8985 7237 3.881 7 5.881 7 F Rat 5.07 (1.97) 6.24	2 4 6 6 6 8 96 38	Prob > F 0.0036* 0.0540 0.0001*	Evidence that labs, oils, and tappet batches differ (possibly stands too)
Tappet Batch		3	3	4891.2		5.82	95		
Term Intercept LTMSLAB[A] LTMSLAB[A] LTMSLAB[A] LTMSLAB[A] LTMSLAB[A] LTMSLAB[A] LTMSLAB[A] LTMSLAB[A] LTMSLAB[A] LTMSLAB[B] LTMSLAB[G] LTMSLAB[G] LTMSLAB[G] IND[830-2] IND[831-1] IND[831-2] IND[PC10B] IND[PC10E]]]:LTM]:LTM]:LTM]:LTM]:LTM]:LTM]:LTM]:LTM	SAPP[2] SAPP[3] SAPP[4] SAPP[1] SAPP[2] SAPP[2] SAPP[2] SAPP[3]	98.20 -4.00 14.19 4.980 -6.70 9.283 3.599 -1.49 6.965 20.4 26.55 -10.0 -30.0 -6.39 20.40 4.630 0.719 -34.9	50195 52095 99911 08169 55328 59192 51817 51692 59156 55162 88216 24775 08826 00754 92438 50352 00754 92438 50352 05711	0.62 0.89 <.00	01* 44 84* 48 35 69 91 53 05 34 35* 52* 45 30* 91 54* 90 88 80	3.9 8.4 1.3 1.5 1.2 1.7 1.7 1.7 1.7 1.3 1.4 1.7 3.8 6.5 1.7 1.8	VIF 179165 691055 110213 075203 204761 329944 636367 077695 853765 188069 179712 956079 991477 212339 588398 754818 461601 571485	Some correlation exists among model effects. This can be improved with the removal of 3 Lab F tests
Tappet Batch Tappet Batch Tappet Batch	n[B]		20.8	59188 17469 54087	0.05 0.00 0.10	06*	1.9	104934 204923 020346	Lubrizol

			Sum of		
Source	Nparm	DF	Squares	F Ratio	Prob > F
LTMSLAB	3	3	4259.6519	5.0768	0.0036*
LTMSAPP[LTMSLAB]	10	10	5536.5345	1.9796	0.0540
IND	5	5	8731.4348	6.2438	0.0001*
Tappet Batch	3	3	4891.2733	5.8295	0.0016*

Lab

Level		Least Sq Mean	Lab B is higher on
В	Α	112.46011	average than A and G
F	ΑB	103.24101	B > (A & G)
Α	В	94.19810	$D > (A \alpha G)$
G	В	83.14156	

Lab Stands

		Least	
Level		Sq Mean	
[B]2	ΑB	119.42562	
[B]1	Α	114.41926	Within Job stands
[G]2	ΑB	109.66634	Within lab, stands
[G]1	ΑB	104.02372	don't significantly
[B]3	ΑB	103.53543	• •
[A]2	ΑB	103.48402	differ
[F]1	ΑB	103.24101	
[A]3	ΑB	97.79328	Lob Cotondo hovo
[A]4	ΑB	92.74641	Lab G stands have
[A]5	ΑB	89.53402	the most spread
[A]1	ΑB	87.43277	
[G]5	ΑB	75.83043	
[G]3	В	73.05330	
[G]4	ΑB	53.13402	

Tappet Batches

Least Sq Mean Level А 119.07766 В С A B 105.69560 D 86.59919 В 81.66832 В Batch B is higher on average than D and A: B > (A & D)

	\mathbf{a}						
	Oi		Least				
Level		Sq	Mean				
831-1	Α	118	72055				
831	Α	113	.75164				
831-2	ΑB	102	.89077				
PC10B	Α	98	.97940				
830-2	ΑB	91	.86776				
PC10E	В	63	.35106				
831 blends don't							
significantly differ							

Levels not connected by same letter are significantly different.

Estimate Term Intercept 94.808546 IND[830-2] -6.392438 IND[831-1] 20.460352 IND[831-2] 4.6305711 IND[PC10B] 0.7192055 IND[PC10E] -34,90914 IND[831] 15.491448 Tappet Batch[A] -16.59188 Tappet Batch[B] 20.817469 Tappet Batch[C] 7.4354087 Tappet Batch[D] -11.661LabStand[A1] -7.375774 LabStand[A2] 8.6754738 LabStand[A3] 2.9847364 LabStand[A4] -2.062137 LabStand[A5] -5.274526 19.610716 LabStand[B1] LabStand[B2] 24.617076 8.7268875 LabStand[B3] LabStand[F1] 8.4324662 9.2151767 LabStand[G1] 14.857791 LabStand[G2] LabStand[G3] -21.75524LabStand[G4] -41.67453 LabStand[G5] -18.97812

Using model we can estimate the mean of Tappet Batch D by averaging over labs/stands assuming the use of 831-2 Model predicted mean for Tappet D = 87.8 (6 test results) Current oil target = 97.2 (14 test results) This does not constitute a statistically significant difference Note: Other models considered: 831 oil blends combined (no significant difference in blends) 3 Lab F results removed (to improve collinearity) 831 blends combined & Lab F tests removed Model conclusions are similar: Estimated Tappet D means range from 87.5 to 88.7

ATWLorig Other Models with Tappet Batch

VIF

<.0001*

0.1449 4.3349594

Combined 831 oil blends

¹ Summary of Fit	
RSquare	0.737872
RSquare Adj	0.655095
Root Mean Square Error	17.63595
Mean of Response	103.8816
Observations (or Sum Wgts)	76

Parameter Estimates Estimate Prob>|t| Term Intercept 93.386688 LTMSLAB[A] -7.283847

LTMSLAB[B]	15.722837	0.0018*	3.0604646	
LTMSLAB[F]	11.69756	0.1666	4.8486826	
LTMSLAB[A]:LTMSAPP[1]	-1.059992	0.9230	1.1441204	
LTMSLAB[A]:LTMSAPP[2]	10.371986	0.1132	1.4275601	
LTMSLAB[A]:LTMSAPP[3]	3.0934465	0.6816	1.2069803	
LTMSLAB[A]:LTMSAPP[4]	-1.276489	0.8467	1.4843713	
LTMSLAB[B]:LTMSAPP[1]	2.3671593	0.6981	1.6342111	
LTMSLAB[B]:LTMSAPP[2]	6.9356158	0.3967	1.6856753	
LTMSLAB[G]:LTMSAPP[1]	24.784669	0.0008*	1.901264	
LTMSLAB[G]:LTMSAPP[2]	28.626915	0.0037*	1.6673009	
LTMSLAB[G]:LTMSAPP[3]	-13.42339	0.1186	1.3358866	
LTMSLAB[G]:LTMSAPP[4]	-34.67625	0.0250*	1.4594033	
Tappet Batch[A]	-22.64855	<.0001*	2.1526545	
Tappet Batch[B]	28.634125	<.0001*	1.3462455	
Tappet Batch[C]	9.8893637	0.0140*	1.3521215	
Ref Oil[830]	5.5424964	0.3331	1.2439806	
Ref Oil[831]	16.736746	0.0007*	1.8007752	

Removal of 3 Lab F results

Summary of Fit	
RSquare	0.787392
RSquare Adj	0.705619
Root Mean Square Error	16.50225
Mean of Response	103.3726
Observations (or Sum Wgts)	73

Parameter Estimates							
Term	Estimate	Prob> t	VIF				
Intercept	94.340408	<.0001*					
LTMSLAB[A]	-2.734006	0.4851	3.0821457				
LTMSLAB[B]	16.480249	0.0002*	2.6406074				
LTMSLAB[A]:LTMSAPP[1]	-6.461298	0.5566	1.307712				
LTMSLAB[A]:LTMSAPP[2]	9.2884218	0.1417	1.512781				
LTMSLAB[A]:LTMSAPP[3]	3.8150805	0.5931	1.2309954				
LTMSLAB[A]:LTMSAPP[4]	-1.925948	0.7670	1.6317957				
LTMSLAB[B]:LTMSAPP[1]	3.2364415	0.5835	1.7415895				
LTMSLAB[B]:LTMSAPP[2]	6.6133771	0.4019	1.7864196				
LTMSLAB[G]:LTMSAPP[1]	20.678126	0.0034*	2.0065982				
LTMSLAB[G]:LTMSAPP[2]	27.06281	0.0040*	1.7180009				
LTMSLAB[G]:LTMSAPP[3]	-10.19217	0.2140	1.3936192				
LTMSLAB[G]:LTMSAPP[4]	-30.10402	0.0400*	1.4991766				
IND[830-2]	-3.808866	0.6116	1.359182				
IND[831-1]	23.234367	0.0022*	3.3790342				
IND[831-2]	7.549098	0.4349	5.7309908				
IND[PC10B]	3.5834097	0.5435	1.5990663				
IND[PC10E]	-31.93534	0.0001*	1.4834682				
Tappet Batch[A]	-17.43443	0.0454*	7.3705444				
Tappet Batch[B]	22.172185	0.0003*	1.8628846				
Tappet Batch[C]	7.1607558	0.1133	1.9862762				

Combined 831 blends & Lab F tests removed

Summary of Fit

RSquare	0.749834
RSquare Adj	0.67251
Root Mean Square Error	17.40555
Mean of Response	103.3726
Observations (or Sum Wqts)	73

Parameter Estimates

Term	Estimate	Prob> t	VIF
Intercept	91.026832	<.0001*	
LTMSLAB[A]	-3.610509	0.3765	3.0040137
LTMSLAB[B]	20.108889	<.0001*	2.3617359
LTMSLAB[A]:LTMSAPP[1]	-0.268152	0.9803	1.14635
LTMSLAB[A]:LTMSAPP[2]	10.376051	0.1086	1.4203354
LTMSLAB[A]:LTMSAPP[3]	3.3026202	0.6573	1.2049135
LTMSLAB[A]:LTMSAPP[4]	-2.101457	0.7480	1.4862737
LTMSLAB[B]:LTMSAPP[1]	2.2278375	0.7115	1.6335339
LTMSLAB[B]:LTMSAPP[2]	7.9866944	0.3251	1.6966395
LTMSLAB[G]:LTMSAPP[1]	24.459892	0.0008*	1.8906853
LTMSLAB[G]:LTMSAPP[2]	29.50011	0.0026*	1.6705454
LTMSLAB[G]:LTMSAPP[3]	-13.58726	0.1099	1.3340923
LTMSLAB[G]:LTMSAPP[4]	-34.82119	0.0228*	1.4594579
Tappet Batch[A]	-24.71145	<.0001*	2.229837
Tappet Batch[B]	30.840352	<.0001*	1.3743185
Tappet Batch[C]	9.7703724	0.0140*	1.339819
Ref Oil[830]	5.9855599	0.2907	1.2470463
Ref Oil[831]	15.722368	0.0013*	1.8227459

ATWLorig Other Models with Tappet Batch

Combined 831

Combined 831 blends &

	oil blends	Lab F results	Lab F tests removed
Tappet Batch Differences	Level Sq Mean B A 122.02081 C B 103.27605 D C 77.51175 A C 70.73813	Level Sq Mean B A 116.51259 C A B 101.50116 D B 82.44190 A A B 76.90598	Level Sq Mean B A 121.86718 C B 100.79720 D C 75.12756 A C 66.31538
Oil Differences	Level Sq Mean 831 A 110.12343 830 A 98.92918 PC10E B 71.10745	Level Sq Mean 831-1 A 117.57478 831-2 A B 101.88951 PC10B A 97.92382 831 A B 95.71774 830-2 A B 90.53154 PC10E B 62.40507	Level Sq Mean 831 A 106.74920 830 A 97.01239 PC10E B 69.31890
Estimated Tappet D mean	88.7	87.5	87.8
0	Current 83	nificantly differ from cu 1 target mean = 97.2	Lubrizol
9 © 2015 The Lubrizol Corporation, all rights reserv	ed. Levels not connected	hy same letter are significantly different	t

Removal of 3

Levels not connected by same letter are significantly different.

ATWLorig Other Models with Tappet Batch

Combined 831 oil blends

		Least
Level		Sq Mean
В	Α	109.10953
F	ΑB	105.08425
Α	В	86.10284
G	В	73.25014

Removal of 3 Lab F results

		Least
Leve	el 👘	Sq Mean
В	Α	110.82066
Α	В	91.60640
G	В	80.59417

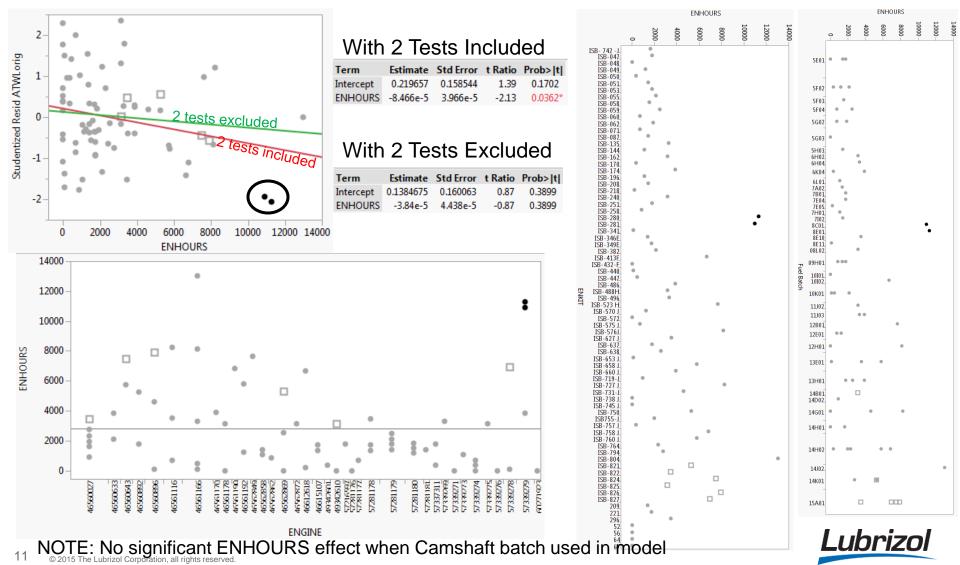
Combined 831 blends & Lab F tests removed

Leve	el	Least Sq Mean
В	Α	111.13572
Α	В	87.41632
G	В	74.52845

Stand	
Differer	nces

Labs Differences

		Least
Level		Sq Mean
[B]2	Α	116.04514
[B]1	Α	111.47668
[F]1	ABC	105.08425
[G]2	ABC	101.87705
[B]3	A C	99.80675
[G]1	A C	98.03481
[A]2	A C	96.47483
[A]3	ABC	89.19629
[A]1	ABC	85.04285
[A]4	ABC	84.82635
[A]5	ABC	74.97389
[G]5	ABC	67.93819
[G]3	В	59.82675
[G]4	ΒC	38.57389


		Least
Level		Sq Mean
[B]2	ΑB	117.43403
[B]1	Α	114.05710
[G]2	ΑB	107.65697
[G]1	ΑB	101.27229
[B]3	ΑB	100.97084
[A]2	ΑB	100.89482
[A]3	ΑB	95.42148
[A]4	ΑB	89.68045
[A]5	ΑB	86.89015
[A]1	ΑB	85.14510
[G]5	ΑB	73.14941
[G]3	В	70.40200
[G]4	ΑB	50.49015

		1
		Least
Level		Sq Mean
[B]2	Α	119.12242
[B]1	Α	113.36356
[G]2	ABC	104.02856
[B]3	A C	100.92119
[G]1	A C	98.98834
[A]2	A C	97.79237
[A]3	ABC	90.71894
[A]1	ABC	87.14817
[A]4	ABC	85.31487
[A]5	ABC	76.10726
[G]5	ABC	68.97691
[G]3	В	60.94119
[G]4	ΒC	39.70726

Engine hours effect heavily influenced by 2 test results; could be hardware related

ATWLorig Model with Camshaft Batch

Summary of Fit					
RSquare	0.874369				
RSquare Adj	0.803702				
Root Mean Square Error	13.30475				
Mean of Response	103.8816				
Observations (or Sum Wgts)	76				

Effect Tests

	Sum of						
Source	Nparm	DF	Squares	F Ratio	Prob > F		
LTMSLAB	3	3	4050.761	7.6278	0.0003*		
LTMSAPP[LTMSLAB]	10	10	3729.862	2.1071	0.0422*		
IND	5	5	4048.928	4.5746	0.0017*		
Camshaft Batch	9	9	11497.401	7.2168	<.0001*		

Parameter Estimates

Parameter Estimates			
Term	Estimate	Prob> t	VIF
Intercept	111.54198	<.0001*	
LTMSLAB[A]	-7.356092	0.1904	9.6210005
LTMSLAB[B]	8.6558442	0.0987	6.1425712
LTMSLAB[F]	19.474737	0.1372	20.289166
LTMSLAB[A]:LTMSAPP[1]	-1.154393	0.8974	1.3378904
LTMSLAB[A]:LTMSAPP[2]	2.3942497	0.6598	1.7635036
LTMSLAB[A]:LTMSAPP[3]	1.3822145	0.8148	1.2984135
LTMSLAB[A]:LTMSAPP[4]	2.8448504	0.5787	1.5628033
LTMSLAB[B]:LTMSAPP[1]	-0.981108	0.8428	1.885911
LTMSLAB[B]:LTMSAPP[2]	2.8045484	0.6668	1.8815629
LTMSLAB[G]:LTMSAPP[1]	18.367712	0.0016*	2.0697919
LTMSLAB[G]:LTMSAPP[2]	23.044722	0.0030*	1.7736994
LTMSLAB[G]:LTMSAPP[3]	-8.309668	0.2103	1.4008416
LTMSLAB[G]:LTMSAPP[4]	-28.44852	0.0172*	1.5009844
IND[830-2]	3.2593052	0.6636	2.783442
IND[831-1]	13.935733	0.0436*	5.526606
IND[831-2]	7.1633333	0.4188	8.8247172
IND[PC10B]	6.20969	0.2136	2.1129634
IND[PC10E]	-26.23372	0.0012*	2.8913892
Camshaft Batch[A]	-31.19749	0.0019*	11.311828
Camshaft Batch[B]	-16.88238	0.0370*	5.8342805
Camshaft Batch[C]	-32.07976	0.0002*	3.6634272
Camshaft Batch[D]	-15.75245	0.4272	14.583029
Camshaft Batch[E]	21.160914	0.0055*	2.980854
Camshaft Batch[F]	35.732436	<.0001*	3.5157481
Camshaft Batch[G]	44.129059	0.0014*	6.3428421
Camshaft Batch[H]	23.648564	0.0017*	2.854729
Camshaft Batch[J]	-4.282304	0.4742	5.1233344

Evidence that labs, oils, stands, and camshaft batches differ

Undesired level of correlation exists among model effects.

This can be improved with the removal of 3 Lab F tests

Row Number

20 10

30 40 50 60 70 80

-10 -20 -30 -40

0

ATWLorig Model with Camshaft Batch

PC10E

В

85.30827

			¹ Effect Tests										
							Sum of						
				Source	Nparm	DF	Squares	F Ratio	Prob > F				
				LTMSLAB	3	3	4050.761	7.6278	0.0003*				
				LTMSAPP[LTMSLAB]	10	10	3729.862	2.1071	0.0422*				
	La	b		IND	5	5	4048.928	4.5746	0.0017*				
				Camshaft Batch	9	9	11497.401	7.2168	<.0001*			Oil	Least
		Least	Lab B is h	iaher on							Level		Sg Mean
Level		Sq Mean		•							831-1	Α	125,47772
F	ΑB	131.01672	average th	han A and G)						831-2		118,70532
В	Α	120.19783	•					831	blends	s don't	PC10B		117.75167
Α	В	104.18589	B > (A & C	כ)							1 0100		114.80129
G	В	90.76750						signi	ricanti	/ differ	· 830-2		
· ·		50.70750						•	•		831	ΑB	107.20764

Lab Stands

	Least					
	Sq Mean			me	haft	Ratch
ABC	131.01672		Ca	11112	IIaii	Dalu
ΑB	123.00238	Within lab stands				Least
Α	119.21672			Level		Sq Mean
Α	118.37439	don't significantly		G	AB	155.67104
ABC	113.81222		ncas avist	F	Α	147.27442
ABC	109.13521	uner Daten unerer		н	AB	135.19055
ABC	107.03074			E	AB	132.70290
АВС	106.58014	Lah Gistands have		J	ΒC	107.25968
АВС	105.56811			D	ABC	95.78953
АВС	103.03150	the most spread		В	С	94.65961
АВС	98.71897			K	С	87.06540
АВС	86.11325			Α	С	80.34449
ΒC	82.45783			С	С	79.46222
C	62.31897					uhriz
	A B A B C A B C	Sq Mean A B C 131.01672 A B 123.00238 A 119.21672 A I19.21672 A I18.37439 A B C A B C 109.13521 A B C 107.03074 A B C 106.58014 A B C 105.56811 A B C 103.03150 A B C 98.71897 A B C 86.11325 B C 82.45783	Sq Mean Within Iab, stands A B C 131.01672 A B 123.00238 A 119.21672 Within Iab, stands A B C 118.37439 A B C 113.81222 A B C 109.13521 A B C 109.13521 A B C 106.58014 A B C 105.56811 A B C 105.56811 A B C 103.03150 A B C 98.71897 A B C 98.71897 A B C 86.11325 B C 86.11325 B C 82.45783	Sq MeanA B C131.01672A B123.00238A B119.21672A IIS.37439Within lab, stands don't significantly differA B C113.81222A B C109.13521A B C109.13521A B C107.03074A B C105.56811A B C105.56811A B C105.56811A B C103.03150A B C103.03150A B C98.71897A B C98.71897A B C86.11325B C82.45783	Sq Mean C 131.01672 A B 123.00238 Within Iab, stands Ievel A 119.21672 Within Iab, stands Ievel A 118.37439 Within Iab, stands Ievel A B C 113.81222 Miffer Batch differences exist Ievel A B C 109.13521 Ha Ievel Ievel A B C 107.03074 Iab G stands have Iab G stands have	Sq MeanC131.01672CCamshaftA B C 132.00238119.21672Vithin lab, standsImage: Complex to the standsImage: Complex to the standsA B C 109.13521113.81222G A BImage: Complex to the standsImage: Complex to the standsA B C 109.13521109.13521Image: Complex to the standsImage: Complex to the standsImage: Complex to the standsA B C 105.56811Lab G stands haveImage: Complex to the standsImage: Complex to the standsImage: Complex to the standsA B C 103.03150Image: Complex to the standsImage: Complex to the standsImage: Complex to the standsImage: Complex to the standsA B C 103.03150Image: Complex to the standsImage: Complex to the standsImage: Complex to the standsImage: Complex to the standsA B C 103.03150Image: Complex to the standsImage: Complex to the standsImage: Complex to the standsImage: Complex to the standsA B C 103.03150Image: Complex to the standsImage: Complex to the standsImage: Complex to the standsImage: Complex to the standsA B C 103.03150Image: Complex to the standsImage: Complex to the standsImage: Complex to the standsImage: Complex to the standsA B C 2 103.03150Image: Complex to the standsImage: Complex to the standsImage: Complex to the standsA B C 2 103.03150Image: Complex to the standsImage: Complex to the standsImage: Complex to the standsA B C 2 103.03150Image: Complex to the standsImage: Complex to the standsImage: Complex to the stands </td

Levels not connected by same letter are significantly different.

ATWLorig Model with Camshaft Batch

Estimate Term Intercept 104.74122 IND[830-2] 3.2593052 IND[831-1] 13.935733 IND[831-2] 7.1633333 IND[PC10B] 6.20969 IND[PC10E] -26.23372Camshaft Batch[A] -31.19749 Camshaft Batch[B] -16.88238 Camshaft Batch[C] -32.07976 Camshaft Batch[D] -15.75245 Camshaft Batch[E] 21.160914 Camshaft Batch[F] 35.732436 Camshaft Batch[G] 44.129059 Camshaft Batch[H] 23.648564 Camshaft Batch[J] -4.282304 LabStand[A1] -1.709726LabStand[A2] 1.8389171 LabStand[A3] 0.826882 LabStand[A4] 2.2895178 LabStand[A5] -6.022254 LabStand[B1] 14.475496 LabStand[B2] 18.261152 LabStand[B3] 13.633163 LabStand[F1] 26.275496 LabStand[G1] 4.3939828 LabStand[G2] 9.0709932 LabStand[G3] -22.2834LabStand[G4] -42.42225

Using model we can estimate the mean of Camshaft Batch K by averaging over lab/stands assuming the use of 831-2 Model predicted mean for Camshaft K = 87.4 (6 test results) Current oil target = 97.2 (14 test results) This does not constitute a statistically significant difference Note: Other models were considered: 831 oil blends combined (no significant difference in blends) 3 Lab F results removed (to improve collinearity) 831 blends combined & Lab F tests removed Model conclusions are similar: Estimated Cam K means range from 85.3 to 87.4

ATWLorig Other Models with Camshaft Batch

Combined 831 oil blends

Summary of Fit

RSquare	0.867579
RSquare Adj	0.805263
Root Mean Square Error	13.25175
Mean of Response	103.8816
Observations (or Sum Wgts)	76

Parameter Estimates

Term	Estimate	Prob> t	VIF
Intercept	109.39555	<.0001*	
LTMSLAB[A]	-5.110663	0.2413	5.8757923
LTMSLAB[B]	12.721743	0.0018*	3.5070939
LTMSLAB[F]	11.425516	0.1642	8.0730945
LTMSLAB[A]:LTMSAPP[1]	0.0178046	0.9984	1.2561762
LTMSLAB[A]:LTMSAPP[2]	2.7362116	0.6079	1.7089799
LTMSLAB[A]:LTMSAPP[3]	1.6217482	0.7793	1.2593051
LTMSLAB[A]:LTMSAPP[4]	3.1453191	0.5318	1.5190162
LTMSLAB[B]:LTMSAPP[1]	-2.818064	0.5513	1.7336862
LTMSLAB[B]:LTMSAPP[2]	3.9685699	0.5264	1.7517683
LTMSLAB[G]:LTMSAPP[1]	19.24426	0.0008*	1.9849811
LTMSLAB[G]:LTMSAPP[2]	23.903287	0.0019*	1.7504785
LTMSLAB[G]:LTMSAPP[3]	-9.372167	0.1504	1.3583628
LTMSLAB[G]:LTMSAPP[4]	-29.99515	0.0110*	1.4708937
Camshaft Batch[A]	-37.29237	<.0001*	4.4910716
Camshaft Batch[B]	-22.49798	<.0001*	2.4430058
Camshaft Batch[C]	-34.11849	<.0001*	2.9935427
Camshaft Batch[D]	-3.097979	0.8411	8.9828511
Camshaft Batch[E]	23.282373	0.0012*	2.6267872
Camshaft Batch[F]	37.741283	<.0001*	3.1051379
Camshaft Batch[G]	46.119872	0.0006*	6.0308747
Camshaft Batch[H]	25.75965	0.0003*	2.4989512
Camshaft Batch[J]	-6.640716	0.1280	2.700391
Ref Oil[830]	9.0437601	0.0517	1.4075782
Ref Oil[831]	11.47691	0.0154*	3.0697327

Removal of 3 Lab F results

Summary of Fit RSquare

RSquare Adj	0.811422
Root Mean Square Error	13.20791
Mean of Response	103.3726
Observations (or Sum Wgts	s) 73

0.8769

Parameter Estimates

Term	Estimate	Prob> t	VIF
Intercept	106.80068	<.0001*	
LTMSLAB[A]	-0.864513	0.7898	3.3098892
LTMSLAB[B]	15.147423	<.0001*	2.8896104
LTMSLAB[A]:LTMSAPP[1]	-1.154393	0.8967	1.3376481
LTMSLAB[A]:LTMSAPP[2]	2.3942497	0.6575	1.7545784
LTMSLAB[A]:LTMSAPP[3]	1.3822145	0.8135	1.2957824
LTMSLAB[A]:LTMSAPP[4]	2.8448504	0.5760	1.5548939
LTMSLAB[B]:LTMSAPP[1]	-0.981108	0.8417	1.8847278
LTMSLAB[B]:LTMSAPP[2]	2.8045484	0.6645	1.8810508
LTMSLAB[G]:LTMSAPP[1]	18.367712	0.0015*	2.0564782
LTMSLAB[G]:LTMSAPP[2]	23.044722	0.0028*	1.7710487
LTMSLAB[G]:LTMSAPP[3]	-8.309668	0.2072	1.3987482
LTMSLAB[G]:LTMSAPP[4]	-28.44852	0.0165*	1.5009844
IND[830-2]	3.2593052	0.6614	2.0864377
IND[831-1]	13.935733	0.0423*	4.5357846
IND[831-2]	7.1633333	0.4155	7.3904954
IND[PC10B]	6.20969	0.2105	1.7395495
IND[PC10E]	-26.23372	0.0011*	2.1673536
Camshaft Batch[A]	-32.94776	0.0008*	10.6176
Camshaft Batch[B]	-18.63265	0.0174*	4.8743163
Camshaft Batch[C]	-33.83003	<.0001*	3.326259
Camshaft Batch[E]	19.410641	0.0082*	2.816124
Camshaft Batch[F]	33.982164	0.0001*	3.2942124
Camshaft Batch[G]	42.378787	0.0015*	6.0501514
Camshaft Batch[H]	21.898291	0.0026*	2.695675
Camshaft Batch[J]	-6.032577	0.2783	4.4317095

Combined 831 blends & Lab F tests removed

Summary of Fit

RSquare	0.870005
RSquare Adj	0.812807
Root Mean Square Error	13.15931
Mean of Response	103.3726
Observations (or Sum Wgts)	73

¹ Parameter Estimates

Term	Estimate	Prob> t	VIF
Intercept	105.93127	<.0001*	
LTMSLAB[A]	-1.302158	0.6834	3.2298485
LTMSLAB[B]	16.530248	<.0001*	2.6006992
LTMSLAB[A]:LTMSAPP[1]	0.0178046	0.9983	1.2559488
LTMSLAB[A]:LTMSAPP[2]	2.7362116	0.6054	1.7003306
LTMSLAB[A]:LTMSAPP[3]	1.6217482	0.7779	1.2567532
LTMSLAB[A]:LTMSAPP[4]	3.1453191	0.5290	1.5113283
LTMSLAB[B]:LTMSAPP[1]	-2.818064	0.5486	1.7325985
LTMSLAB[B]:LTMSAPP[2]	3.9685699	0.5236	1.7512915
TMSLAB[G]:LTMSAPP[1]	19.24426	0.0007*	1.9722129
TMSLAB[G]:LTMSAPP[2]	23.903287	0.0018*	1.7478626
TMSLAB[G]:LTMSAPP[3]	-9.372167	0.1477	1.3563329
TMSLAB[G]:LTMSAPP[4]	-29.99515	0.0105*	1.4708937
amshaft Batch[A]	-37.63659	<.0001*	4.2399402
Camshaft Batch[B]	-22.8422	<.0001*	2.4159374
Camshaft Batch[C]	-34.46271	<.0001*	2.7735183
Camshaft Batch[E]	22.938153	0.0009*	2.4478435
Camshaft Batch[F]	37.397063	<.0001*	2.9138457
Camshaft Batch[G]	45.775652	0.0005*	5.7519093
Camshaft Batch[H]	25.41543	0.0002*	2.3262195
Camshaft Batch[J]	-6.984936	0.0806	2.2651228
Ref Oil[830]	9.0437601	0.0502	1.4075782
Ref Oil[831]	11.47691	0.0148*	3.0488362
	_		

15 © 2015 The Lubrizol Corporation, all rights reserved.

ATWLorig Other Models with Camshaft Batch

Combined 831 oil blends

Camshaft Batch Differences

		Least
Level		Sq Mean
G	Α	155.51542
F	Α	147.13684
н	Α	135.15520
E	Α	132.67793
D	ABC	106.29757
J	В	102.75484
В	ΒC	86.89757
K	C	80.13991
C	С	75.27706
Α	C	72.10318

Removal of 3 Lab F results

Least Level Sq Mean G А 149.17946 Α 140.78284 н 128.69897 AΒ ΑB 126.21132 B C 100.76810 С 88.16803 80.57382 κ C 73.85291 А C С С 72.97065

J

В

Combined 831 blends & Lab F tests removed

		Least
Leve	el	Sq Mean
G	Α	151.70692
F	Α	143.32833
н	Α	131.34670
E	Α	128.86942
J	В	98.94633
В	ΒC	83.08907
Κ	С	76.33141
C	С	71.46856
Α	C	68.29468

Oil Differences

			Least
Level			Sq Mean
831	А		120.87246
830	А		118.43931
PC10E		В	88.87488

		Least
Level		Sq Mean
831-1	Α	120.73641
831-2	ΑB	113.96401
PC10B	Α	113.01037
830-2	Α	110.05998
831	ΑB	102.46633
PC10E	В	80.56696

		Least
Level		Sq Mean
831	Α	117.40818
830	Α	114.97503
PC10E	В	85.41060

Estimated 86.5 85.4 Camshaft K mean Estimated means do not significantly differ from current oil target

Current 831 Target mean = 97.2

Levels not connected by same letter are significantly different.

Lubrizol

ATWLorig Other Models with Camshaft Batch

Combined 831 oil blends

		Least
Level		Sq Mean
В	Α	122.11730
F	ΑB	120.82107
Α	В	104.28489
G	В	90.35896

Removal of 3 Lab F results

Leve	el	Least Sq Mean
В	Α	121.94810
Α	В	105.93616
G	В	92.51777

Combined 831 blends & Lab F tests removed

		Least
Leve	el	Sq Mean
В	Α	122.46152
Α	В	104.62911
G	С	90.70318

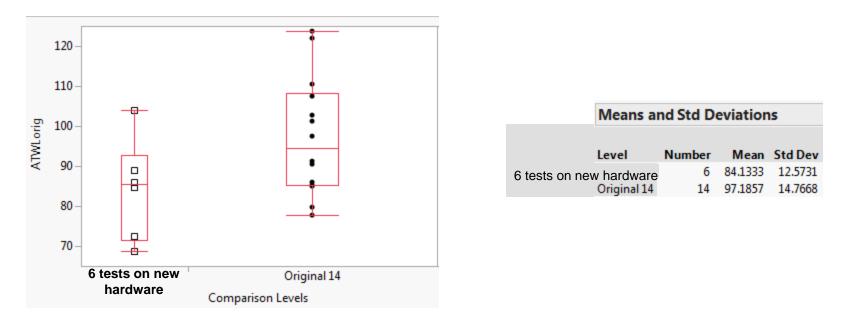
Stand Differences

Labs Differences

		Least
Level		Sq Mean
[B]2	Α	126.08587
[B]3	Α	120.96679
[F]1	ABC	120.82107
[B]1	Α	119.29923
[G]2	АВС	114.26224
[G]1	A C	109.60322
[A]4	АВС	107.43021
[A]2	АВС	107.02110
[A]3	АВС	105.90664
[A]1	АВС	104.30269
[A]5	АВС	96.76381
[G]5	АВС	86.57873
[G]3	В	80.98679
[G]4	ΒC	60.36381

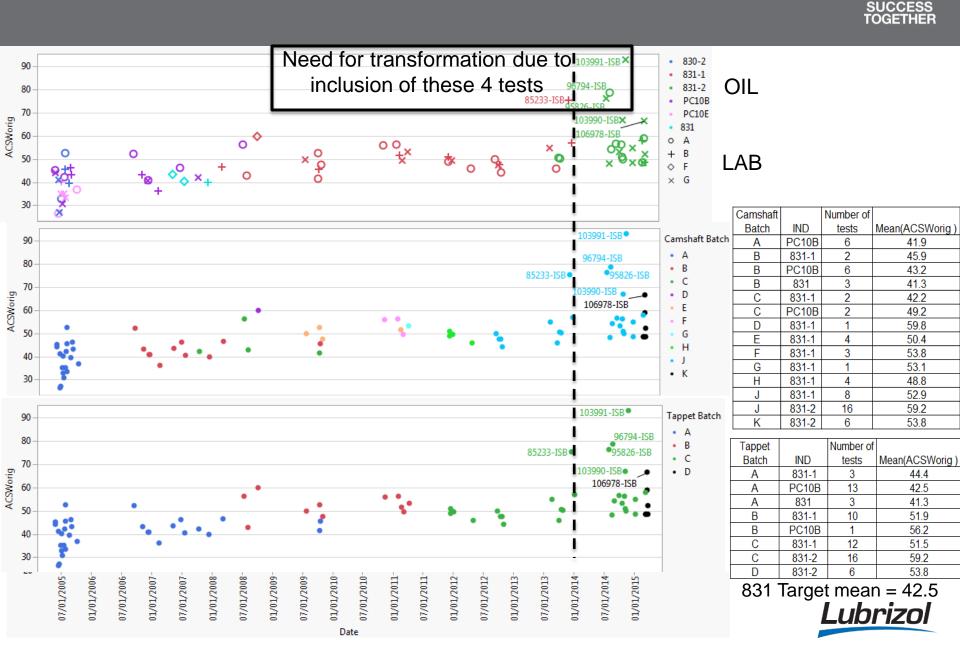
		Least
Level		Sq Mean
[B]2	Α	124.75265
[B]1	Α	120.96699
[B]3	Α	120.12466
[G]2	ΑB	115.56249
[G]1	ΑB	110.88548
[A]4	ΑB	108.78102
[A]2	ΑB	108.33041
[A]3	ΑB	107.31838
[A]1	ΑB	104.78177
[A]5	ΑB	100.46924
[G]5	ΑB	87.86353
[G]3	В	84.20810
[G]4	В	64.06924

A	Least Sq Mean
Δ	Sqiviean
Δ	
~	126.43009
Α	121.31101
Α	119.64345
AB	114.60646
Α	109.94744
АВС	107.77443
АВС	107.36532
ABC	106.25086
ABC	104.64691
ABC	97.10803
ABC	86.92295
ΒC	81.33101
С	60.70803
	A A B A B C A B C A B C A B C B C

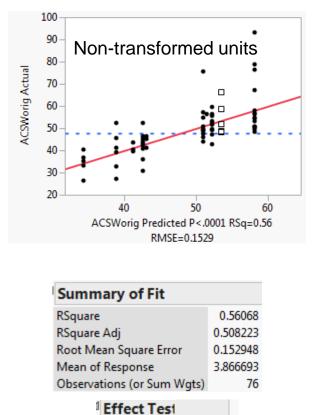


ATWLorig Non-Model based comparison

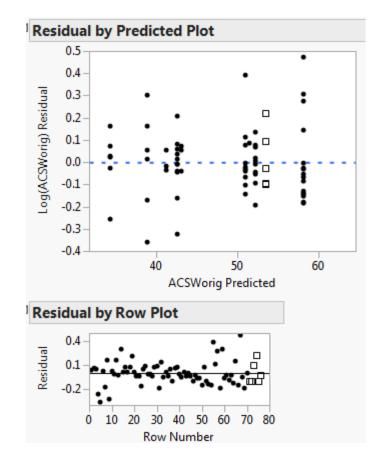
Inhrizo


Comparisons between 6 tests with latest hardware and the original 14 tests used to generate current targets

There is no significant difference between the mean of the latest 6 tests on the new hardware and the original target


There is no significant difference between the variability observed in the 6 tests on the new hardware and the original 14 tests used to calculate the current oil target

Average Camshaft Wear



All 76 tests utilized; natural logarithm transformation applied: In(ACSWorig)

Source	Prob > F
IND	0.0228*
Tappet Batch	0.1018

All 76 tests utilized; natural logarithm transformation applied: In(ACSWorig)

Non-transformed units shown; Comparisons made in transformed units

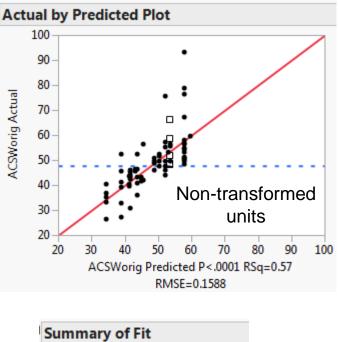
Effect Test			Least
	Oils differ (831-2 > PC10E)	Level	Sq Mean
Course Deales C		831-2 A	54.809980
Source Prob > F	\mathbf{T}	831-1 A E	48.132427
IND 0.0228*	Tappet batches tend to be	PC10B A E	47.516672
Tappet Batch 0.1018	different	831 A E	46.091516
	different	830-2 A E	43.456491
		PC10E E	38.348302

Expanded Est	timates	Transformed units									
Nominal factors expanded to all levels											
Term	Estimate	Std Error	t Ratio	Prob> t							
Intercept	3.8313347	0.044384	86.32	<.0001*							
IND[830-2]	-0.059575	0.062401	-0.95	0.3432							
IND[831-1]	0.0426214	0.056461	0.75	0.4530							
IND[831-2]	0.1725376	0.073907	2.33	0.0226*							
IND[PC10B]	0.0297459	0.046567	0.64	0.5251							
IND[PC10E]	-0.184624	0.062401	-2.96	0.0043*							
IND[831]	-0.000706	0.08058	-0.01	0.9930							
Tappet Batch[A]	-0.111319	0.064679	-1.72	0.0898							
Tappet Batch[B]	0.0796552	0.0473	1.68	0.0968							
Tappet Batch[C]	0.0573368	0.03746	1.53	0.1306							
Tappet Batch[D]	-0.025673	0.063904	-0.40	0.6892							

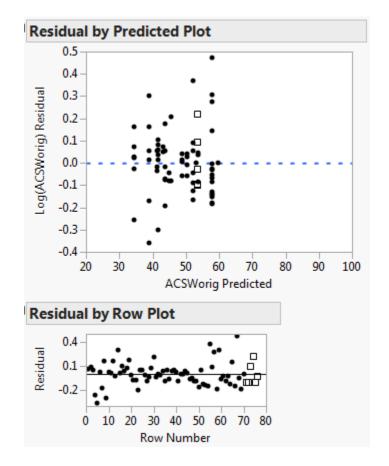
Using the model we can estimate the mean of Tappet D assuming the use of 831-2

Model predicted mean for Tappet D = 53.4 (3.9782 in ln units) Current oil target = 42.5

The estimated mean for Tappet D is significantly different than the current oil target



	All data;			4 tests removed;				4 tests removed;								
All data; Oil blends included Model Summary of Fit Nean of Response Observations (or Sum Wgts) All data; Summary 0.56068 0.508223 0.55082 0.508223 0.52948 3.866693 76		Oil blends combined Summary of Fit RSquare Adj 0.493556 Root Mean Square Error 0.155212 Mean of Response 3.866693 Observations (or Sum Wgts) 76			Oil blends included Summary of Fit RSquare Adj 0.558813 Root Mean Square Error 5.386875 Mean of Response 47.15278 Observations (or Sum Wgts) 72			Oil blends combined Summary of Fit RSquare Adj 0.550412 Root Mean Square Error 5.437922 Mean of Response 47.15278 Observations (or Sum Wgts) 72								
Source Prob > F Overall Tests IND 0.0228* Tappet Batch 0.1018					Source Prob > F Tappet Batch <.0001*			SourceProb > FIND0.0198*Tappet Batch0.0283*			SourceProb > FTappet Batch<.0001*					
Model	IND[830-2] IND[831-1] IND[831-2]	Estimate 3.8313347 -0.059575 0.0426214 0.1725376 0.0297459 -0.184624 -0.111319 0.0796552	<.0001* 0.3432 0.4530	1.4784045 2.9478306 4.7283067 1.4282767 1.4784045 5.1461253 1.5944215	Parameter E Term Intercept Tappet Batch[A] Tappet Batch[B] Tappet Batch[C] Ref Oil[830] Ref Oil[831]	Estimate 3.8214092 -0.173803 0.0316515	<.0001* <.0001* 0.4337 0.0076* 0.7929		Term Intercept IND[830-2] IND[831-1] IND[PC108] IND[PC108] Tappet Batch[/ Tappet Batch[/ Tappet Batch[/	46.965469 -1.725776 1.5393061 5.9672781 1.3540769 -6.909109 A] -5.473026 3.7757002	0.4428 0.0300* 0.4137 0.0026* 0.0202* 0.0290*	VIF 1.4827327 2.8574845 4.5884908 1.429439 1.4827327 5.1435857 1.6392246 1.6009372	Term Intercept Tappet Bate Tappet Bate Tappet Bate Ref Oil[830] Ref Oil[831]	46.4710 ch[A] -7.479 ch[B] 2.1570 ch[C] 1.61084 0.77450	ate rob>[t] 511 <.0001* 506 <.0001* 815 0.1313 453 0.1570 514 0.6513 105 0.0084*	1.1231744 1.0920492 1.1812865
Oil & Tappets	831-2 A 54 831-1 A B 48 PC10B A B 47 831 A B 46 830-2 A B 43 PC10E B 38	Least q Mean 4.809980 3.132427 7.516672 5.091516 3.456491 3.348302	Level B A C A D A A A	Least Sq Mean 49.948372 48.845951 44.954989 41.265046	Level Sq 831 A 50.4 830 A B 46.2	Least Mean 40243 58448 20897 B A	A A A	Least Sq Mean 49.707238 48.367068 47.137113 38.382681	831-1 A B PC10B A 831 A B 830-2 A B	Least Le 52,932747 B 48,504775 D 48,319546 C 46,739693 A 45,239693 4	AB	Least Sq Mean 50.741169 47.849389 47.778876 41.492443	Level D A B A C A A B	Least Sq Mean 50.182456 48.629426 48.082456 38.992105	831 A 830 A B	Least Sq Mean 50.105821 47.246172 42.062839
Estimated 53.4 Tappet D mean (3.9782)					53.4 (3.9782)			53.8				53.8				
(transformed 22 © 2015 The	ans dif	fer fro	om	CURRE 1 Targe	nt oil t et mean	arget = 42.5	in a y differ	all mo	dels	Lu	briz	ol				


ACSWorig Model with Camshaft Batch

All 76 tests utilized; natural logarithm transformation applied: In(ACSWorig)

Summary of Fit					
RSquare		0.56873			
RSquare Adj		0.469751			
Root Mean Square Erro	or	0.158818			
Mean of Response		3.866693			
Observations (or Sum	Wgts)	76			
Source IND Camshaft Batch	Prob > 0.219 0.624	9			

ACSWorig Model with Camshaft Batch

All 76 tests utilized; natural logarithm transformation applied: Ln(ACSWorig)

No significant difference among oil and camshaft batches in this model

		Source IND Camshaft I		r ob > F 0.2199 0.6248	Level 831-2 PC10B	A	Least Sq Mean 54.760242 50.017390	Lev D F	rel A A	Least Sq Mean 58.387767 52.438851	Non-transformed units shown;
					831-1	Â	49.176284	G	A	51.845994	Comparisons made in transformed units
					831	А	47.038051	J	Α	50.894601	
					830-2	А	46.815290	Е	Α	49.123021	
					PC10E	А	41.312284	н	Α	47.592117	
								К	Α	46.840448	
								С	Α	43.859111	
								В	Α	42.092319	
Esti	mates							Α	Α	39.874763	
	Estimate	Std Error	t Ratio	Prob> t	VIF						
	3.8715122	0.056165	68.93	<.0001*							
	-0.025302	0.082315	-0.31	0.7596	2.3858964		Collinea	arit	v in	data af	fects oil and
	0.0238993	0.071374	0.33	0.7389	4.3688779				-		
	0.1314522	0.090814	1.45		6.6210938		camsha	att k	Date	n signi	licance
	0.0408585	0.050714	0.81		1.5711059						
	-0.150352	0.082315	-1.83	0.0727	2.3858964						

This will be shown using other models on the following slides

-0.09053

Camshaft Batch[A] -0.185769

Camshaft Batch[B] -0.131647

Camshaft Batch[D] 0.1955942

Camshaft Batch[E] 0.0228156

Camshaft Batch[F] 0.0881355

Camshaft Batch[G] 0.0767655

Camshaft Batch[H] -0.008845

Camshaft Batch[J] 0.0582446

Camshaft Batch[C]

0.102265

0.079614

0.082721

0.147392

0.081182

0.090951

0.147392

0.081182

0.058632

-1.82

-1.65

-1.09

1.33

0.28

0.97

0.52

-0.11

0.99

0.1034

0.2781

0.1894

0.7796

0.3364

0.6044

0.9136

0.0742 9.1653947

4.1892966

2.6986382

2.5991645

2.9127878

5.745722

2.5991645

0.3244 3.5077171

5.745722

Parameter E

Term Intercept IND[830-2] IND[831-1] IND[831-2] IND[PC10B] IND[PC10E]

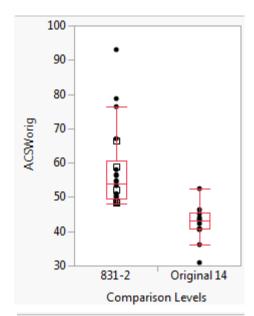
ACSWorig Models with Camshaft Batch

	All data;	All data;	All data;	4 tests	4 tests	4 tests
	Oil & Cam	Oil	Cam	removed;		
		.		,	removed;	removed;
Model	included	included	included	Oil & Cam	Oil	Cam
Summary				included	included	included
of Fit					0.540357	
RSquare	0.56873	0.51834	0.51752	0.620013	0.548367	0.563126
RSquare Adj	0.469751	0.483936	0.451728	0.526683	0.514152	0.499709
Root Mean Square Erro		0.156679	0.161494	5.579579	5.652958	5.736364
Mean of Response	3.866693	3.866693	3.866693	47.15278	47.15278	47.15278
Observations (or Sum \	Wgts) 76	76	76	72	72	72
Model						
Source	Prob > F	Prob > F		Prob > F	Prob > F	
IND	0.2199	<.0001*	Prob > F	0.1478	<.0001*	Prob > F
Camshaft Batch	0.6248		<.0001*	0.3166		<.0001*
Term	Prob> t VIF	Prob> t VIF	Prob> t VIF	Prob> t VIF	Prob> t VIF	Prob> t VIF
Intercept	<.0001*	<.0001*	<.0001* .	<.0001*	<.0001*	<.0001*
IND[830-2]	0.7596 2.3858964	0.0540 1.1900205		0.9007 2.392087	0.0571 1.1913192	
IND[831-1]	0.7389 4.3688779	<.0001* 1.0716944		0.8152 4.2347915	<.0001* 1.0625337	
IND[831-2]	0.1529 6.6210938	<.0001* 1.0768831		0.1589 6.4442014	<.0001* 1.0736467	
IND[PC10B]	0.4236 1.5711059	0.8210 1.0861862		0.3268 1.5758234	0.8584 1.0837142	
IND[PC10E]	0.0727 2.3858964	<.0001* 1.1900205		0.0605 2.392087	<.0001* 1.1913192	
Camshaft Batch[A]	0.0742 9.1653947			0.0191* 9.1406374		<.0001* 1.736
Camshaft Batch[B]	0.1034 4.1892966		<.0001* 1.7424641	0.0265* 4.199001		0.0006* 1.7850432
Camshaft Batch[C]	0.2781 2.6986382		0.0074* 1.7856129	0.1440 2.7063824		0.1284 2.3316207
Camshaft Batch[D]	0.1894 5.745722		0.2353 2.3314773	0.0494* 5.7356936		0.0650 5.5515079
Camshaft Batch[E]	0.7796 2.5991645		0.2167 5.5662017	0.7400 2.6069379		0.8875 2.3316207
Camshaft Batch[F]	0.3364 2.9127878		0.8864 2.3314773 0.3909 2.6737814	0.1742 2.9182495		0.2266 2.6725404
Camshaft Batch[G]	0.6044 5.745722		0.3909 2.8737814 0.6601 5.5662017	0.4777 5.7356936		0.5506 5.5515079
Camshaft Batch[H]	0.9136 2.5991645		0.7945 2.3314773	0.8283 2.6069379		0.6723 2.3316207
Camshaft Batch[J]	0.3244 3.5077171		0.0064* 1.7427612	0.9145 3.4419562		0.1384 1.7333715
25						

25 © 2015 The Lubrizol Corporation, all rights reserved.

ACSWorig Models with Camshaft Batch

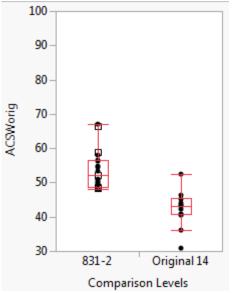
	All data; Oil & Cam included		All data; Cam included	4 tests removed; Oil & Cam included	4 tests removed; Oil included	4 tests removed; Cam included
Oil	Level Sq Mean 831-2 A 54.760242 PC10B A 50.017390 831-1 A 49.176284 831 A 47.038051 830-2 A 46.815290 PC10E A 41.312284	Level Sq Mean 831-2 A 56.745141 831-1 A B 50.399515 PC10B C 43.094815 831-2 A C 141.235929 830-2 C D 38.878495 PC10E D 34.308437		Level Sq Mean 831-2 A 53.514848 PC10B A 50.577266 831-1 A 49.397266 830-2 A 48.443932 831 A 47.648932 PC10E A 43.260599	Level Sq Mean 831-2 A 53.768421 831-1 A B 49.766667 PC10B C 43.507143 831 B C D 830-2 C D 39.766667 PC10E D 34.583333	
Camshaft Batches	Level Sq Mean D A 58.387767 F A 52.438851 G A 51.845994 J A 50.894601 E A 49.123021 H A 47.592117 K A 46.840448 C A 43.859111 B A 42.092319 A A 39.874763		Level Sq Mean D A B C 59.80000 J A 56.000358 F A B 53.707197 K A B 53.420754 G A B C 53.100000 E A B C 50.311166 H A B C 48.743234 C A B C 45.302462 B B C 42.986713 A C 38.122764	Level Sq Mean D A 59.209875 F A 53.209875 G A 52.509875 G A 52.509875 E A 49.759875 K A 49.038446 H A 48.184875 C A 42.424875 B A 40.129875		Level Sq Mean D A B 59.80000 K A S3.816667 F A B 53.816667 F A B 53.810000 G A B 53.100000 J A 52.305000 E A B 50.350000 H A B C 48.775000 C A B C 45.675000 B B C 43.181818 A A C 38.750000 C 50.350000
Estimated Cam K (or 831- mean	2) 53.4 (3.9782)	56.7 (4.03857)	53.4 (3.9782)	53.8	53.8	53.8
(transformed units)	Estimated	means diffe Cu Levels not cor	rfrom currer rrent 831 Target nected by same fett	t oil target in a t mean = 42.5 er are significantly diffe	all models erent.	Lubrizol


ACSWorig Non-Model based comparison

100 90 80 ACSWorig 70 60 50 40 30 6 tests on new Original 14 hardware Comparison Levels Means and Std Deviations level Mean Std Dev Number 6 tests on new hardware 6 53.8167 7.39552 Original 14 14 42.4857 4.98796

Original Target vs. Latest 6 Tests

Means significantly differ; No significant difference in variances Original Target vs. 831-2 Tests



Means and Std Deviations

Level	Number	Mean	Std Dev
831-2	22	57.7182	11.8093
Original 14	14	42.4857	4.9880

Means significantly differ; Variances significantly differ

Original Target vs. 831-2 Tests; 3 tests excluded

Means and Std Deviations

Level	Number	Mean	Std Dev
831-2	19	53.7684	5.72820
Original 14	14	42.4857	4.98796

Means significantly differ; No significant difference in variances

Summary ATWL

No significant difference between the original oil targets and new hardware estimates

		Model				
					Estimated New Hardware	Estimated
Number of Tests	Lab/stand	Oil	Tappet Batch	Camshaft Batch	Mean	Standard Deviation
76; all data	х	Blends included	x		87.8	16.72
76; all data	Х	Blends combined	Х		88.7	17.64
73; Lab F removed	Х	Blends included	Х		87.5	16.5
73; Lab F removed	Х	Blends combined	Х		87.8	17.4
76; all data	Х	Blends included		Х	87.4	13.3
76; all data	Х	Blends combined		Х	86.5	13.25
73; Lab F removed	Х	Blends included		Х	85.4	13.21
73; Lab F removed	Х	Blends combined		Х	85.3	13.16
20	New hardwa	re vs. 14 tests used	to calculate curre	ent oil targets	84.1	12.57

Current Oil Target Mean = 97.2; Current Oil Target Standard Deviation = 14.8

Summary ACSW

There is a significant difference between the original oil target and new hardware estimated means

		Model Terr	ns					
							Estimated	
							New	
						Estimated	Hardware	
						New	Mean in	Estimated
						Hardware	Natural	Standard
Number of Tests	Lab/stand	Oil	Tappet Batch	Camshaft Batch	Transformation	Mean	Units	Deviation
76; all data		Blends included	Х		Natural Log	3.9782	53.4	0.15295
76; all data		Blends combined	Х		Natural Log	3.9782	53.4	0.15521
72		Blends included	X		None	53.8	53.8	5.39
72		Blends combined	Х		None	53.8	53.8	5.44
76; all data		Blends included		Х	Natural Log	3.9782	53.4	0.15882
76; all data		Blends included			Natural Log	4.03857	56.7 🧋	0.15668
76; all data				Х	Natural Log	3.9782	53.4	0.16149
72		Blends included		Х	None	53.8	53.8	5.58
72		Blends included			None	53.8	53.8 <	5.65
72				Х	None	53.8	53.8	5.74
20	New	hardware vs. 14 tests used to	calculate curren	t oil targets	None	53.8	53.8	7.4

831-2 estimated means since only Oil is in the model

Number of Tests	Comparison	Estimated 831-2 Mean	Estimated 831-2 Standard Deviation
36	14 tests used to calculate current oil targets vs. 831-2 Tests	57.7	1 <mark>1</mark> .8
33	14 tests used to calculate current oil targets vs. 831-2 Tests; 3 Tests Removed	53.8	5.7

Current Oil Target Mean = 42.5;

© 2015 The Lubrizol Corporation, all rights reserved.

Current Oil Target Standard Deviation = 5.0

ACSW Correction Factor Options

Option 1: Assume test precision has NOT changed

Use estimates based on model with camshaft batch

Four tests excluded

		Model Terr	ns					
							Estimated	
							New	
						Estimated	Hardware	
						New	Mean in	Estimated
						Hardware	Natural	Standard
Number of Tests	Lab/stand	Oil	Tappet Batch	Camshaft Batch	Transformation	Mean	Units	Deviation
72				Х	None	53.8	53.8	5.74

Current Oil Target Mean = 42.5 CF: ACSWorig – 11.3 (where 11.3 = 53.8 – 42.5) Oil Targets for LTMS remain unchanged: Standard Deviation: 5.0 Mean: 42.5

ACSW **Correction Factor Options**

Option 2: Assume test precision has changed and will continue to be different Use estimates based on model with camshaft batch

All data included

			Model Terr	ns					
								Estimated	
								New	
							Estimated	Hardware	
							New	Mean in	Estimated
							Hardware	Natural	Standard
Number of	Tests	Lab/stand	Oil	Tappet Batch	Camshaft Batch	Transformation	Mean	Units	Deviation
76; all data					Х	Natural Log	3.9782	53.4	0.16149

Current Oil Target Mean = 42.5 (3.7423 in In units) CF: In(ACSWorig) – 0.2359 Modify Oil Targets for LTMS (natural log units): Standard Deviation: 0.16149 Mean: 3.7423

ACSW Correction Factor Options

Option 3: Assume change is related to oil batch change and NOT hardware Use estimates based on model with Oil Blends All data included

							Estimated	
							Oil	
						Estimated	Mean in	Estimated
						Oil	Natural	Standard
Number of Tests	Lab/stand	Oil	Tappet Batch	Camshaft Batch	Transformation	Mean	Units	Deviation
76; all data		Blends included			Natural Log	4.03857	56.7	0.15668

Current Oil Target Mean = 42.5 Modify Oil Targets for LTMS (natural log units): Standard Deviation: 0.15668 Mean: 4.03857

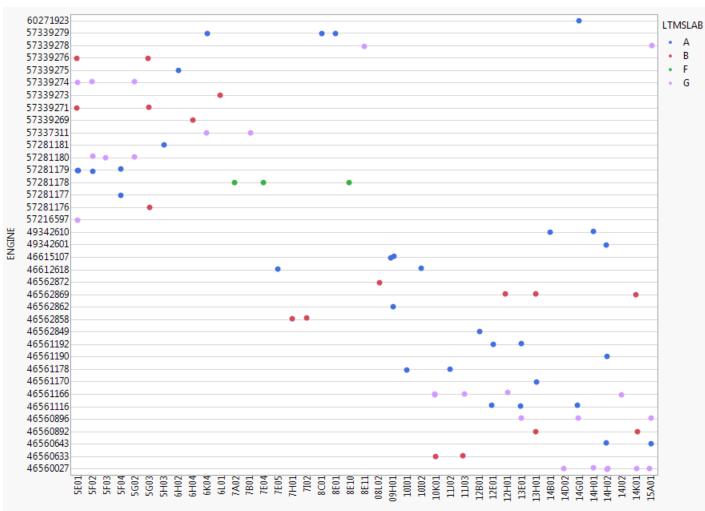
We could also use non-model based	Number of Tests	Comparison	Estimated 831-2 Mean	Estimated 831-2 Standard Deviation
estimates	36	14 tests used to calculate current oil targets vs. 831-2 Tests	57.7	11.8

Working together, achieving great things

When your company and ours combine energies, great things can happen. You bring ideas, challenges and opportunities. We'll bring powerful additive and market expertise, unmatched testing capabilities, integrated global supply and an independent approach to help you differentiate and succeed.

APPENDIX A

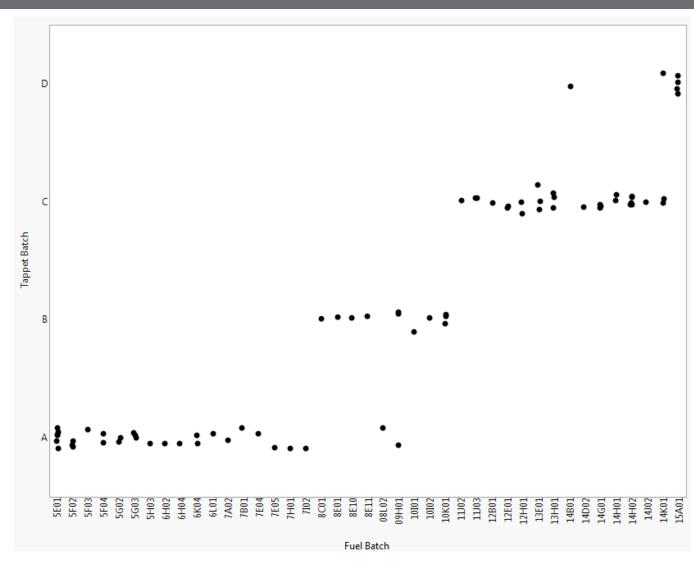
Relationship between Fuel Batches, Engines, Tappet Batches, Camshaft Batches, and Oils


Fuel Batch by Engine

As expected:

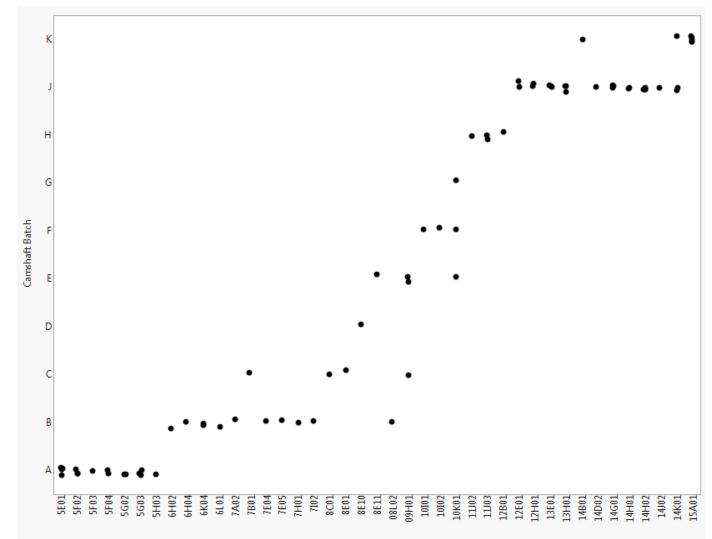
- Each engine is associated with a single lab
- Each Fuel Batch is used in a subset of the engines
- Many Fuel Batches are only used in a subset of the labs

It is not possible with these data to simultaneously estimate both Engine & Fuel Batch differences


Simultaneous estimation of Fuel Batch and Lab is difficult due to limited Lab F data

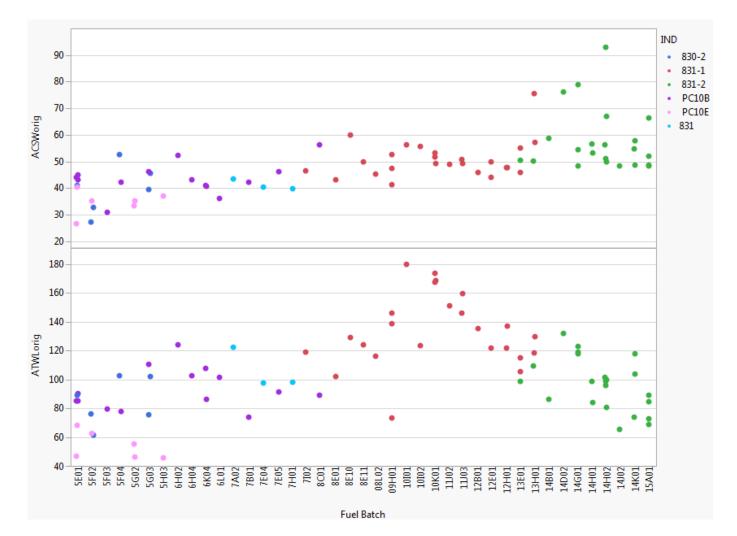
Tappet Batch by Fuel Batch

It is not possible with these data to simultaneously estimate Fuel Batch & Tappet Batch differences



Camshaft Batch by Fuel Batch

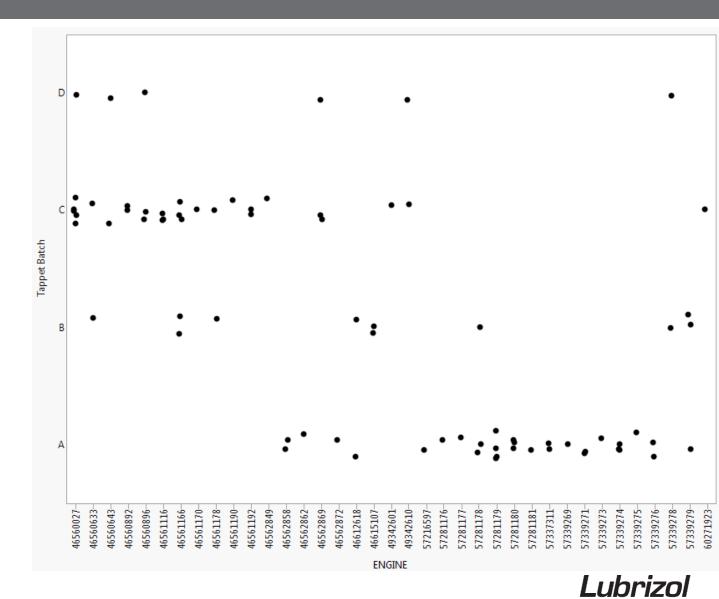
It is not possible with these data to simultaneously estimate Fuel Batch & Camshaft Batch differences


Fuel Batch

38 © 2015 The Lubrizol Corporation, all rights reserved.

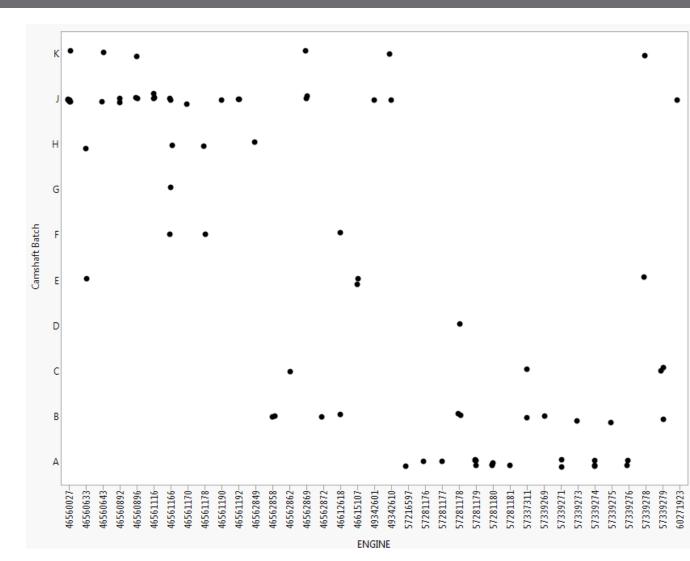
ACSW & ATWL by Fuel Batch

Differences in Oils and their blends may be influenced by differences in Fuel Batches



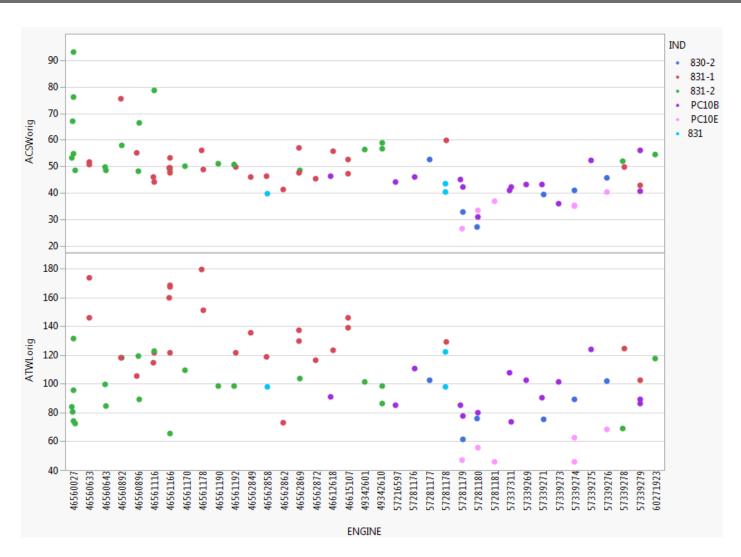
Lubrizol

Tappet Batch by Engine


SUCCESS

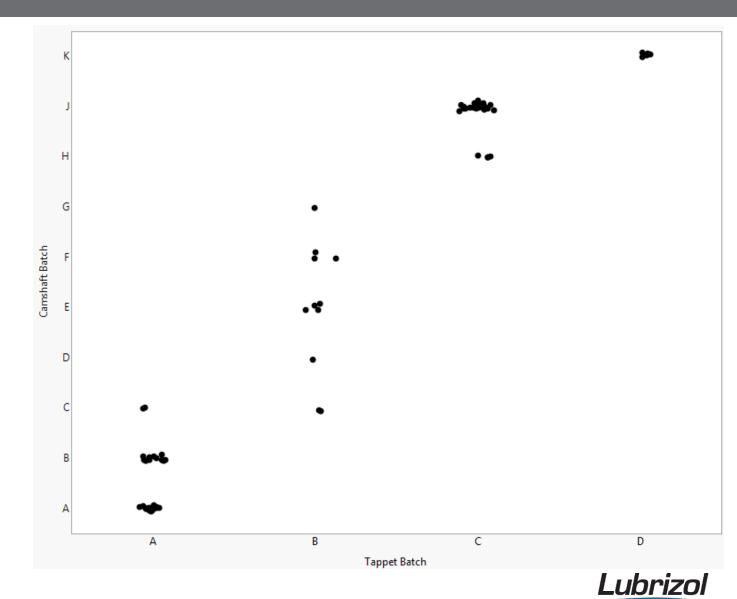
It is not possible with these data to simultaneously estimate Engine & Tappet Batch differences

Camshaft Batch by Engine


It is not possible with these data to simultaneously estimate Engine & Camshaft Batch differences

ACSW & ATWL by Engine

Differences in Oils and their blends may be influenced by differences in Engines



Camshaft Batch by Tappet Batch

SUCCESS

It is not possible with these data to simultaneously estimate Tappet & Camshaft Batch differences

APPENDIX B LTMS Details & Hardware History

LTMS file contains test results from 20041115 to 20150315

Severity adjustments are not currently applicable

1. These would affect candidate results only

Values used in ISB LTMS calculations

EWMA Chart Shewhart Chart LAMBDA Κ Κ Chart Level Precision Precision Precision Limit Type Severity Severity Severity Stand Action 2.10 2.362.10 0.3 0.3 1.96 Warning 0.2 0.2 2.10 2.36Industry Action 0.2 0.2 2.80 3.00 ___

LUBRICANT TEST MONITORING SYSTEM CONSTANTS

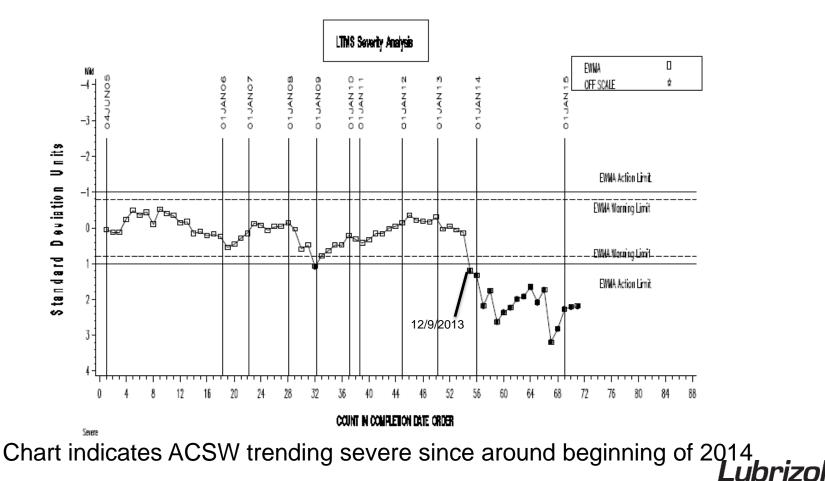
Correction factors are currently in place for: Average Tappet Weight Loss (ATWL) Average Camshaft Wear (ACSW)

.0		/		
ISB	April 21, 2011	***		Multiply ATWL by 0.637; Add -9.5 to ACSW
ISB	December 11, 2011	November 12, 2012	U 1	Multiply ATWL by 0.637; Add -9.5 to ACSW
ISB	November 13, 2012	***		Multiply ATWL by 0.711; Add -5.6 to ACSW

History of Reference Oil Targets (831-2 is new batch introduced in 2013)

ISB Reference Oil Targets							
		Effective Dates		Average Camshaft Wear		Average Tappet Weight Loss	
Oil	n	From	To ¹	$\overline{\mathbf{X}}$	s	$\overline{\mathbf{X}}$	s
821 (PC10E)	6	6-4-05	12-31-05	34.6	4.6	56.2	9.6
830-2	6	6-4-05	12-31-05	39.8	9.0	85.9	16.0
831 (PC10B)	6	6-4-05	1-24-07	41.9	5.6	88.7	15.9
	10	1-25-07	8-6-07	42.8	5.4	94.9	15.3
	14	8-7-07	***	42.5	5.0	97.2	14.8
831-1 ²	1	8-7-07	***	42.5	5.0	97.2	14.8
831-2 ²		8-6-13	***	42.5	5.0	97.2	14.8

1 *** = currently in effect


Targets based on oil 831 831-1 and 831-2 currently based on 831 targets

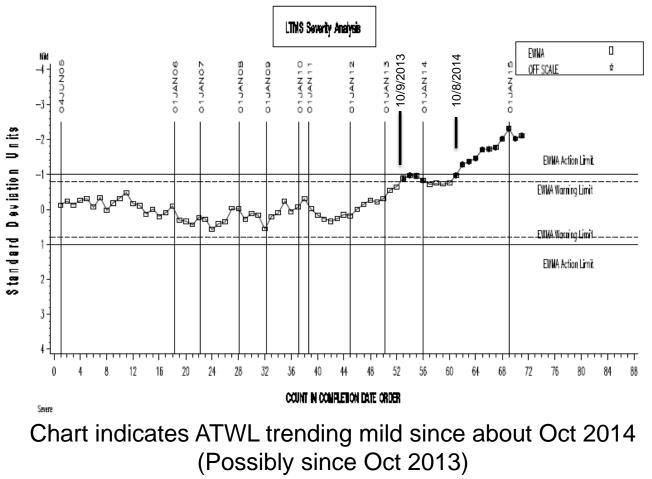
2

Average Camshaft Wear ACSWzi EWMA Control Chart

CUMMINS ISB INDUSTRY OPERATIONALLY VALID DATA

AVERAGE CAMSHAFT WEAR

Average Tappet Weight Loss ATWLzi EWMA Control Chart



Lubrizol

CUMMINS ISB INDUSTRY OPERATIONALLY VALID DATA

AVERAGE TAPPET WEIGHT LOSS

Hardware

Cummins ISB Critical Engine Parts Batch Changes						
ISB Camshaft Batch	Starting Kit #	Date				
Α	1	Jun-2004				
B	135	Feb-2006				
C	244	Aug-2007				
D	290	Jul-2008				
E	337	Apr-2009				
F	389	Mar-2010				
G	441	Mar-2011				
H	486	Nov-2011				
J	569	Aug-2012				
K	821	Jan-2015				
ISB Tappet Batch	Starting Kit #	Date				
Α	1	Jun-2004				
В	279	Jan-2008				
C	475	Aug-2011				
D	821	Jan-2015				
ISB Crosshead Batch	Starting Kit #	Date				
Α	1	Jun-2004				
В	279	Jan-2008				
C	475	Aug-2011				
D	569	Aug-2012				

48 © 2015 The Lubrizol Corporation, all rights reserved.

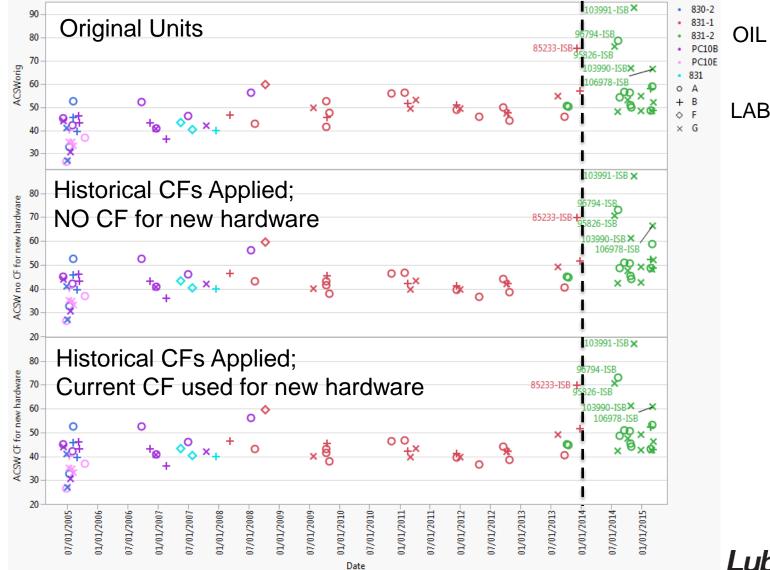
Hardware

Pushrod Batches

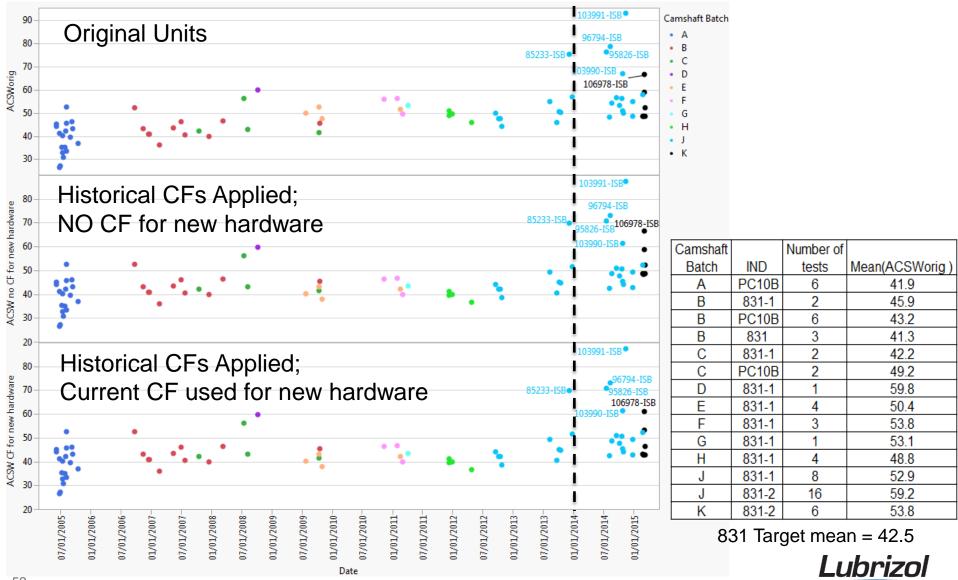
New pushrods estimated to start with Kit# 556

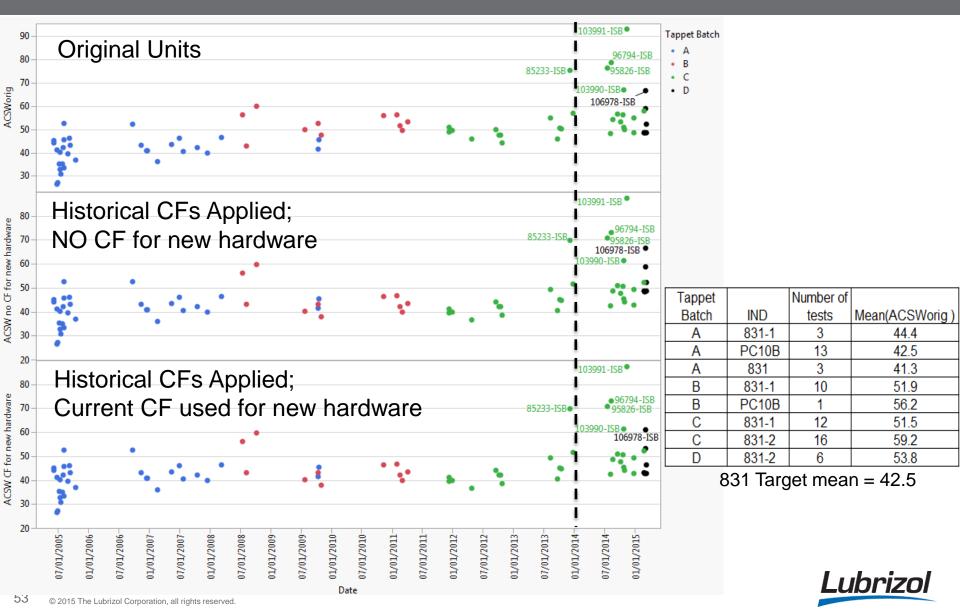
- 5000 were obtained on June 22, 2012
- We cannot guarantee these 5000 came from the same batch

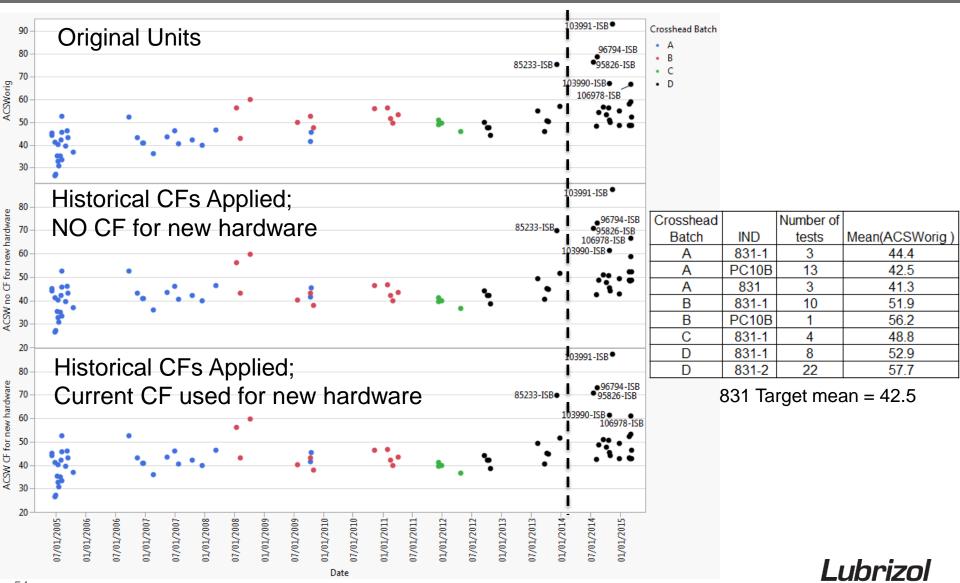
Prior to new pushrod "batch", pushrods came in small quantities from different batches

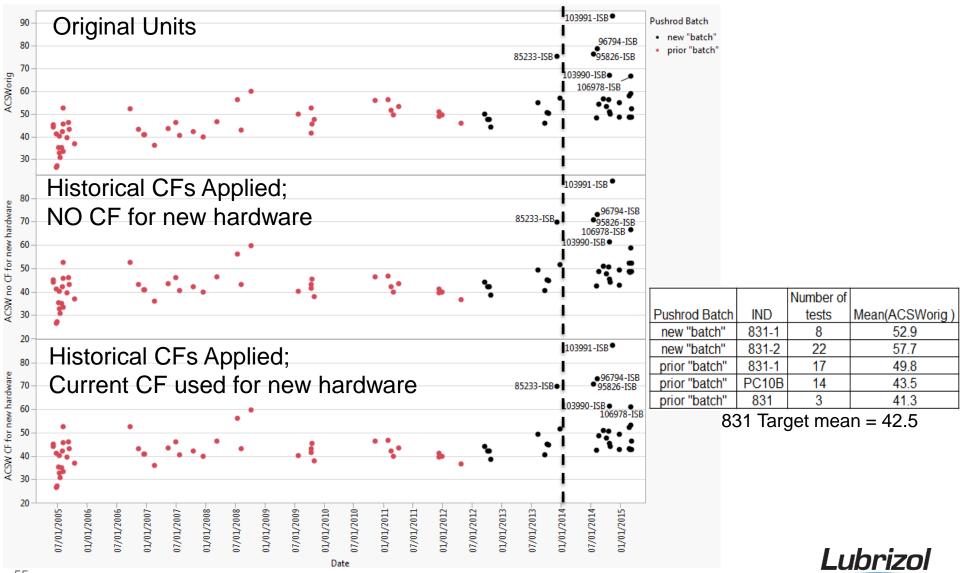


APPENDIX C Average Camshaft Wear Graphs

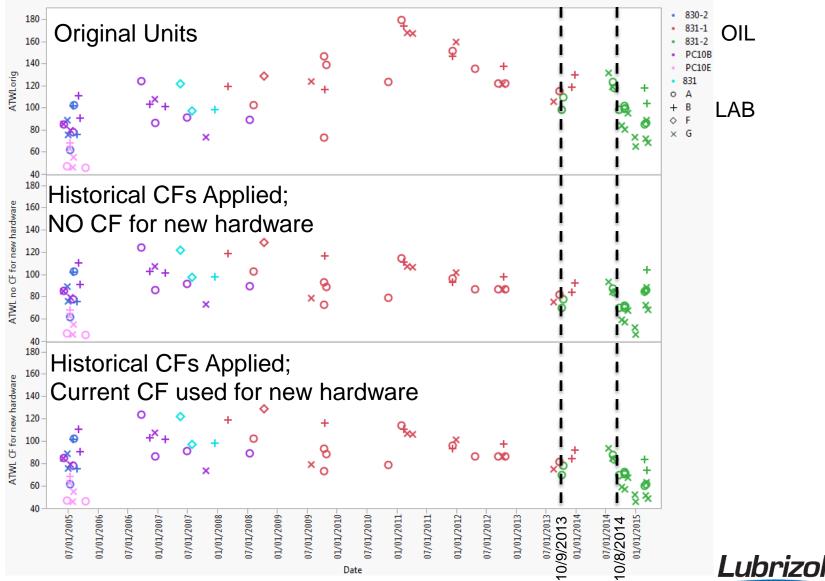

Average Camshaft Wear By OIL and LAB


Average Camshaft Wear By Camshaft Batch

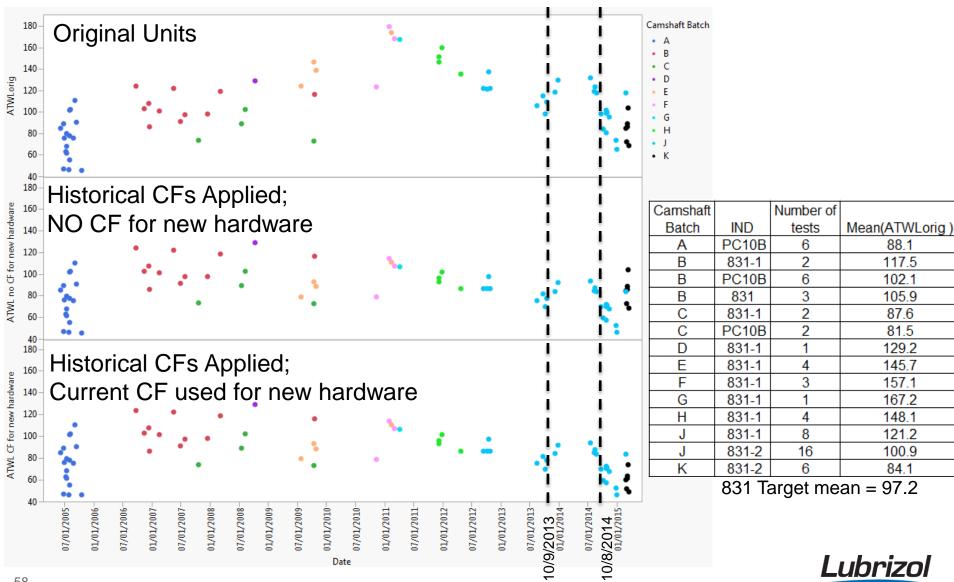

Average Camshaft Wear By Tappet Batch


Average Camshaft Wear By Crosshead Batch

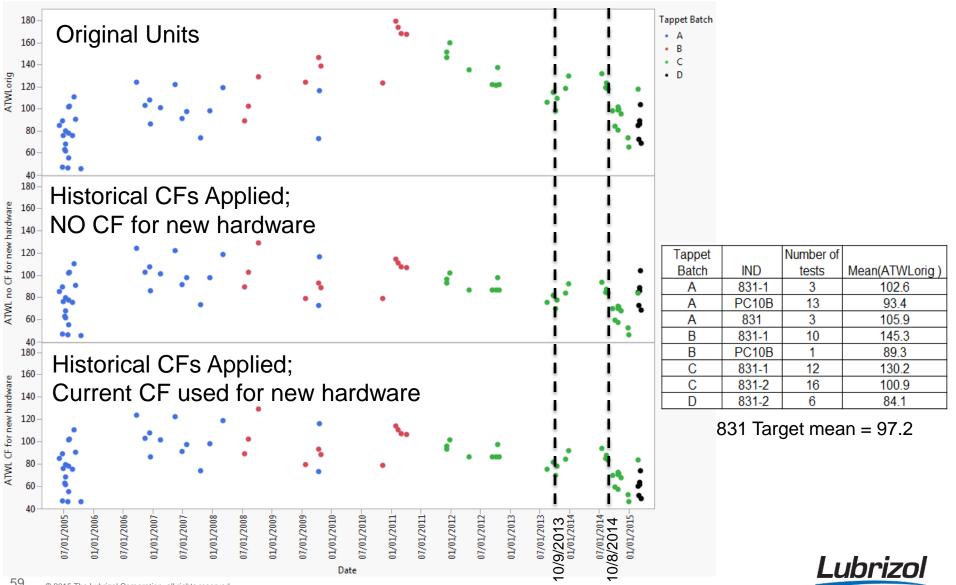
Average Camshaft Wear By Pushrod "Batch"

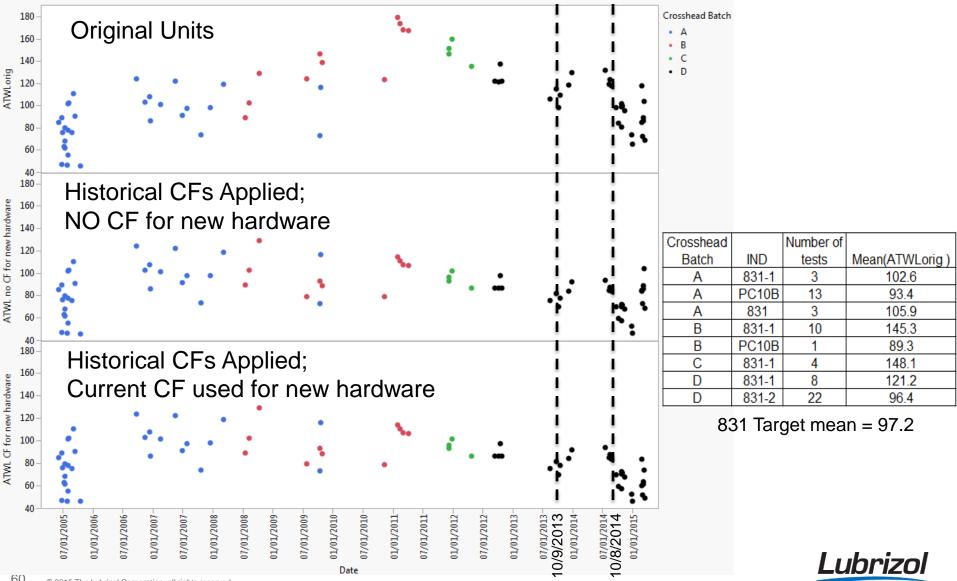


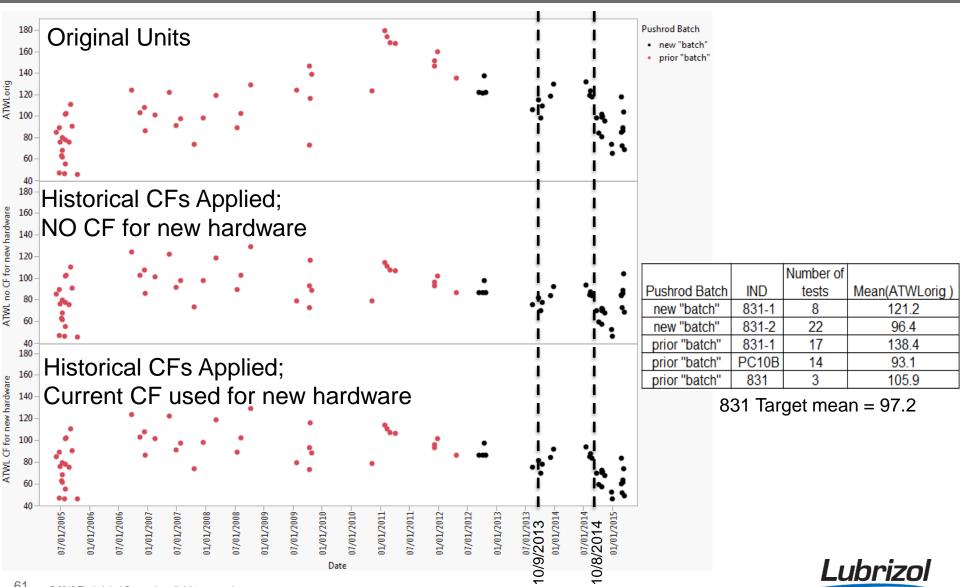
APPENDIX D Average Tappet Weight Loss Graphs


Average Tappet Weight Loss (ATWLorig): By Oil and Lab

SUCCESS TOGETHEF


Average Tappet Weight Loss (ATWLorig): By Camshaft Batch


Average Tappet Weight Loss (ATWLorig): By Tappet Batch


Average Tappet Weight Loss (ATWLorig): By Crosshead Batch

Average Tappet Weight Loss (ATWLorig): By Pushrod Batch

