Mack T-10 Integrated IR

Report on Oxidation measurement 2/22/01

Joe Franklin

T10 Chemical Subgroup Issues to address

- Oxidation measurement needed.
- Timing critical.
- Reproducible and valuable data from high soot samples.

Oxidation measurement needed

- Integrated area IR vs. Peak height.
 - Primary value of area peak broadening.
 - Multiple oxidation components.

Timing critical

- Use readily available techniques.
 - Transmission cell (0.05mm BaF)
 - Standard detector
 - Dilution with fresh oil as needed to stay within linearity of detector. (measured for instrument)

Reproducible and valuable data from high soot samples

- Round Robin
 - 9 complete T10 tests including intermediates.
 - 4 suppliers
 - 1st set of data not reproducible
 - meeting to review analysis techniques inconsistent
 - 5 proposed techniques.
 - 4 labs produced data.

All oils

T10 C	hemist	ry Subo	group IF	Round	Robin		
	Recalculation of Original data						
	Lab:	all					
Summary Statistics by metho	d						
method		Method 1	Method 2	Method 3	Method 4	Method 5	
Reproducibility estimate (1 sigma)		0.3338	0.3148	0.1866	0.2462	0.4628	
sigma/range, %		1.5%	1.4%	2.3%	2.6%	4.9%	
Data range		21.91	21.91	8.26	9.63	9.46	
min		0.00	0.00	-0.63	-1.18	-1.18	
max		21.91	21.91	7.64	8.45	8.28	

	We decided to re-analyze the data in five ways:							
Method 1	? Tangent Baseline correction/Fixed integration region (differential spectra)							
	? Baseline calculated as a tangent to the 2000 - 1870 Region							
	? Integrate between 1870 and 1665							
	? Subtract spectra before calculations							
Method 2	? Tangent Baseline correction/Fixed integration region (original spectra)							
	? Baseline calculated as a tangent to the 2000 - 1870 Region							
	? Integrate between 1870 and 1665							
	? Calculations done on original spectra then subtract the integrals							
Method 3	? Two Point baseline correction using a minimum (differential spectra)							
	? Calculate baseline from point at 1665 and the minimum between 1750 and 1870							
	? Integrate between the two baseline points							
	? Subtract spectra before calculations							
Method 4	? Two Point baseline correction using a minimum (Original spectra)							
	? Calculate baseline from point at 1665 and the minimum between 1750 and 1870							
	? Integrate between the two baseline points							
	? Calculations done on original spectra then subtract the integrals							
Method 5	? Two Point baseline correction using fixed points (Differential spectra)							
	? Calculate baseline from point at 1665 and 1800							
	? Integrate between the two baseline points							
	? Subtract spectra before calculations							

Method selection

- Method 2 and 5 will be run for the matrix.
- Method 2 best reproducibility.
- Method 5 ease of implementation.
- All methods discriminate appropriately based on expected oil performance.

Method 2

Method 5

