

M11 Low Temperature Flow

Presentation to
HDEOCP
August 16, 2001
David M Stehouwer

Preliminary Conclusions

- Olt is possible for poorly dispersed soot to increase viscosity dramatically
- Well dispersed soot increases lube viscosity as soot increases
- OFor well dispersed soot in lubricants, and for fresh lubricants pumping time through the engine correlates with MRV viscosity.
- OBased on very limited data, correlation seems best with modified MRV.

ATTACHMENT 18, 3 OF 6

Correlation of MRV to Engine Flow

M-11 Low Temp Pumpability

- Oils at -25 C would not allow the engine to crank
- This suggests 20 000 cP as a critical viscosity
- Given results from C. May LOTRUO data 25 000 cP seemed reasonable
- **OSWRI** Data shows:
 - √ 72% of oils below 15,000 cP @ 75 hrs
 - √ 97 % of oils below 25,000 cP

SWRI MRV data on 75 hr samples

	Bin	Frequency	Cumulative %
0 to	5000	0	.00%
5001 to	10000	1	3.13%
10001 to	15000	22	71.88%
15001 to	20000	6	90.63%
20001 to	25000	2	96.88%
25001 to	30000	1	100.00%
More		0	100.00%

