A Study of the Low-Temperature Flow Properties of Highly Sooted, Heavy-Duty Engine Oils

Results from a New Temperature-Scanning Viscometric Technique

Presented at the HDEOCP Meeting Chicago, O'Hare Airport Holiday Inn 2001 August 15

By Theodore Selby, Savant Inc.

Background:

- The negative impact of highly sooted, heavy duty engine oils regarding low-temperature starting and, particularly, pumpability has generated considerable interest, concern, and work.
- Older pumpability methods originally developed for fresh passenger car engine oils have been applied to sooted oil pumpability with limited success regarding analysis time, precision, and sensitivity to soot effects.
- What is obviously needed is a fast, precise test -capable of providing all critical information regarding viscosity and soot structure.

Recent Background:

- The higher-torque temperature-scanning approach reported earlier has now been matched with a new program.
- Very recently, Chris May kindly supplied Savant with seven sooted oils from his collection.
- Savant used the oils and the new viscometers and program to apply a new method for characterizing the low temperature flow of sooted oils.
- Extensive work was completed and analyzed last week and the results are promising.

The method developed and used in the study:

- The oil is heated to 90°C for one hour in a viscometer cell.
- The cell is brought to +20°C in the bath to be used while stirring the oil with the rotor at 12 RPM continuously.
- Alternatively, the oil is brought to -5°C while stirring.
- Starting at either +20°C or -5°C, the oil is cooled at 3°C/hr. Until the bath reaches -26°C.
- The temperature scan of viscosity is completed in either 16 hours or in 7 hours, respective to the starting temperature. (All oils in this study were cooled 16 hours.)

A couple of examples to show how the data will be presented:

A viscosity-temperature/Gelation Index graph:

A MacCoull, Walther, Wright graph:

Well-behaved highly sooted Oil 723-G run in duplicate using temperaturescanning viscometry. Note the straight line of superimposed data.

Another view of Oil 723-G run in duplicate showing the simple viscosity-temperature curve and Gelation Index. Repeatability is very good.

Three TP-1 values obtained at 5°C intervals are added to the information. Agreement of the two instruments is good with well-behaved oil.

Recording the data continuously from +20°C to -25°C shows that further data can be collected if desired. In the case of Oil 723-E, the oil has a well behaved appearance from +20° to -12°C at which point the oil deteriorates into poor flow behavior.

Summarizing the data from the seven Mack T-10 highly sooted oils, the information in Table 1 is helpful. The Average Differences shows that the repeatability of the broader range scanning viscometry is good.

Table 1 - Analysis of Seven Mack T-10 Highly-Sooted Engine Oils at Low Temperatures												
Oil ID	Temperature at 60,000 cP		Well- Behaved?	Gelation Index		Gelation Index Temperature		TP-1 Viscosity, cP				
	Test 1	Test 2	Denaveu:	HIGGA		remperature		-15°C	-20°C	-25°C		
723-D	-17.9°C	-18.1°C	No	15.1	15.7	-16.6°C	-16.6°C	8,040	26,500	165,000		
723-E	-18.3°C	-18.5°C	No	16.2	17.1	-16.2°C	-17.1°C	6,940	25,200	562,000		
723-F	-25.2°C	-25.1°C	Yes					7,100	14,300	51,800		
723-G	-24.7°C	-24.8°C	Yes					12,800	25,000	56,800		
723-H		-23.2°C	Yes					10,900	23,700	76,000		
723-I	-10.5°C	-10.7°C	No	9.6	9.1	-6.2°C	-6.0°C	17,800	56,300	437,000		
723-J	-18.5°C	-18.5°C	No	12.1	12.5	-16.4°C	-16.6°C	9,520	37,900	415,000		
Average 1.3°C Difference				0.6		0.3°C						

Repeatability of the temperature-scanning viscosities taken at -15°, -20°, and -25°C is shown in Table 2. In general, the repeatability is good.

Table 2 - Repeatability of Viscosities at Three Temperatures											
Oil ID	-15	5°C	-20)°C	-25°C						
	Test 1	Test 2	Test 1	Test 2	Test 1	Test 2					
723-D	12700	12700									
723-E	10700	10700									
723-F	9400	9100	18600	18000	58100	56300					
723-G	13900	13700	28200	28100	62000	61800					
723-J	13400	13500									

Conclusions:

The new method is

- Fast
 - 7 hours or 16 hours depending on the temperature range desired.
- Precise
 - Closely replicates viscosities, 60,000 cP intercepts, Gelation Indexes, and total flow curves.
- Informative
 - Shows entire flow curve and reasons for poor oil behavior.
- Correlates with TP-1
 - Correlates quantitatively with TP-1 values on wellbehaved sooted oils.
 - Correlates qualitatively on failure of poorly behaved oils.

Thanks for your time and attention Ted Selby