ExxonMobil Phosphorus Volatility Studies

ESCIT September 28, 2006

Need for Bench Phosphorus Volatility Test

- Phosphorus in believed to be detrimental to threeway-catalysts used in gasoline engines
- No tests are available to quantify this effect
- Engine oil specifications today use elemental limits to control the phosphorus impact on TWCs
- There is significant interest in developing a laboratory test to measure phosphorus volatilization
 - To provide better protection for emission catalysts
 - To provide greater formulating flexibility

Phosphorus Volatility Study Overview

- Comparison of 1° & 2° ZDDP impact on phosphorus volatilization in several tests
 - PEI
 - Literature
 - TGA
 - IIIG
 - VIB
 - Bulk oxidation test
 - ROBO

ZDDPs Studied & Expected Results

- Low molecular weight 2° ZDDP & high molecular weight 1° ZDDP were evaluated for phosphorus volatilization
- Expected results
 - 1° ZDDP should volatilize less phosphorus
 - + High molecular weight molecules are less volatile
 - + 1° ZDDP are more stable than 2° ZDDP

ZDDPs Studied

	1° ZDDP	2° ZDDP
R Group	octyl	C3 & C4
MW	771	575

Phosphorus Emission Index Study

Variables Studied

- Volatility affects (Group II vs Group IV)
- Dispersant level (ZDDP complexing agent)
- 1° vs 2° ZDDP
- Alternate 2° ZDDP (ZDDP 3 & 4)
- 0.075% P

Phosphorus Emission Index Data

PEI of 10 = 1.6% P loss

(bigger number indicates more P volatilization)

Phosphorus Emission Index Conclusions

- Main effect is ZDDP type; 2° lower PEI than 1° ZDDP
- Noack volatility has no effect (8-15%range)
- Dispersant effect not statistically significant
- Results agree with PEI literature
 - Phosphorus Additive Chemistry & its Effects on the Phosphorus Volatility of Engine Oil - TSelby
- Results agree with other Selby Noack studies at EM

ZDDP Literature

1° ZDDP is more stable than 2° ZDDP

- Spikes, Tribology Letters V17, 3, 469-489 (2004)
- Coy & Jones, ASLE Trans V24, 1, 17-90 (1980)
- Coy & Jones, ASLE Trans V24, 1, 91-97 (1980)
- Larson, Scientific Lubrication 12-19 (1958)
- Born, Hipeaux, Marchand, & Parc, Engine Oils & Automotive Lubrication, 335-358 (1992)
- Rowe & Dickert, ASLE Trans V10, 85-90 (1967)
- Bennett, ASLE Trans V2, 78-90 (1959)

TGA Weight vs Temperature for 1° & 2° ZDDP Samples

Phosphorus Volatility - IIIG Data

- Significant amounts of base stock are distilled in IIIG engine test
- EOT sump oil analyzed
- Ca increase used as a marker
- Measure [DP/DCa]*100
 - +100 = no phosphorus emissions (higher number is better)
- 1° ZDDP has significant P emission benefit over 2° ZDDP in the IIIG
- 1° ZDDP has significant S emission benefit over 2° ZDDP in the IIIG

IIIG Sump Sample Concentration Change

(Data from Slide 7 Presented in a Different Manner)

Sequence VIB Data

- Consecutive VIB tests run (same stand) on 0W-30 oils blended with 0.075% 1° ZDDP and 2° ZDDP
- 122 hr sump sample analyzed
 - 1° ZDDP volatilizes less phosphorus than 2° ZDDP
 - 1° ZDDP volatilizes less sulfur than 2° ZDDP
 - Bias between ICP & XRF

		0W-30 w/1° ZDDP	0W-30 w/1°	0W-30 w/2°	0W-30 w/2°
		New Oil	ZDDP after VIB	ZDDP New Oil	ZDDP after VIB
D 4951 ICP	Ca, wt%	0.264	0.273	0.263	0.272
D 6443 XRF	Ca, wt%	0.2605	0.2725	0.2592	0.2774
D 4951 ICP	P, wt%	0.077	0.084	0.076	0.071
D 6443 XRF	P, wt%	0.0756	0.0792	0.0753	0.0687

Retained Phosphorus

	1° ZDDP	2° ZDDP
ΔP (ICP), %	109.1	93.4
∆Ca (ICP), %	103.4	103.4
D P/ D Ca (ICP)	105.5	90.3
ΔP (XRF), %	104.8	91.2
∆Ca (XRF), % D P/ D Ca (XRF)	104.6	107.0
D P/ D Ca (XRF)	100.1	85.2

Bulk Oxidation Comparison

Conditions

- soluble iron added to accelerate degradation
- air bubbled through samples
- 309 hour test duration
- 0W-30 oils tested (0.10% P)

Results

- 1° ZDDP volatilizes less P than 2° ZDDP
- 1° ZDDP volatilizes less S than 2° ZDDP

Bias between ICP & XRF

		0W-30 w/1°	0W-30 w/1° ZDDP	0W-30 w/2° ZDDP	ZDDP after
		ZDDP New Oil	after Bench Test	New Oil	Bench Test
D 4951 ICP	Ca, wt%	0.2621	0.311	0.254	0.342
D 6443 XRF	Ca, wt%	0.2621	0.3053	0.2621	0.3205
D 4951 ICP	P, wt%	0.1035	0.135	0.1032	0.128
D 6443 XRF	P, wt%	0.1035	0.1177	0.105	0.1103

	1° ZDDP	2° ZDDP
ΔP (ICP), %	130.4	124.0
ΔCa (ICP), %	118.7	134.6
DP/DCa (ICP)	109.9	92.1
ΔP (XRF), %	113.7	105.0
ΔP (XRF), % ΔCa (XRF), %	113.7 116.5	105.0 122.3

ROBO Comparison

Conditions

- soluble iron added to accelerate degradation
- Atmosphere contains air & NO₂
- 40 hour test duration
- 0W-30 oils tested (0.10% P)

Results

1° ZDDP volatilizes less P than 2° ZDDP

					0W-30 w/2°
		0W-30 w/1°	0W-30 w/1° ZDDP	0W-30 w/2° ZDDP	ZDDP after
		ZDDP New Oil	after ROBO	New Oil	ROBO
D 4951 ICP	Ca, wt%	0.2512	0.4098	0.2512	0.3545
D 4951 ICP	P, wt%	0.0993	0.1542	0.0967	0.1200

Retained Phosphorus

	1° ZDDP	2° ZDDP
∆P (ICP), %	155.3	124.1
∆Ca (ICP), %	163.1	141.1
DP/DCa (ICP)	95.2	87.9

Phosphorus Volatilization Conclusions

- Impact of HMW 1° & LMW 2° ZDDP on phosphorus volatilization in several tests was studied
- PEI ranking did not agree with other tests
 - PEI results suggest more P volatilized from the HMW 1° ZDDP than LMW 2° ZDDP
 - Literature, TGA, IIIG, VIB, Bulk oxidation test, & ROBO indicate that the LMW 2° ZDDP volatilizes more P than the HMW 1° ZDDP
 - + Magnitude of Phosphorus loss varies for each test- IIIG>VIB
- Discrimination of phosphorus volatiles is possible with either a bench or engine test