
Sequence VH O&H Meeting February 25th, 2025 at 3PM EST via MS Teams

Attendees:

Overview:

- 1. Hardware
- 2. Operation
- 3. Fuel
- 4. Other

Notes:

1. Hardware

- Runs per camshaft
 - o TMC has requested labs to provide camshaft run number values for all reference results
 - Proposal: Complete by March 31st, 2025 to allow labs the time to balance with fuel approval matrix and standard workload

2. Operation

- In-person lab meeting to discuss VH / VJ occurred on February 11th in San Antonio
 - o Proposal: Request that test labs target a surface finish that meets the following criteria

	Sequence VH		
	Nominal	Proposed Range	
Parameter	Observed	Min	Max
Rpk	7	4	10
Rk	25	19	31
Rvk	34	31	37
Rz	108	94	122
MR2	84	70% min	
Ra	10	9	11
Crevice Volume (100-MR2)xRvk/200	_	0.39	2.36

- See presentation
- o Feedback

- Labs are receptive to agreeing on tighter spec without validity implications but struggled to agree on the right target
- If you impart a shift in the test based on limited data, we could end up in worse spot
- Labs should consider a refined honing procedure once additional data is available and follow-up build workshop conducted

Lab	How often are brushes changed?	Load	Stokes	Typical Ra (μin)
Procedure	Undefined	25 to 30	45	8 to 13
Α	?	20 to 25	45	10 to 12
В	?	30	25	9 to 10
D	With honing fluid, every 15h	28	45	10 to 12
E	Never	20 to 25	30	11 to 13
G	Never	20	10	9 to 10

- From 2024 Build Workshop:
- Added additional slides showing Crevice Volume by lab
- Lab B calibration attempt with -4 fuel batch
 - Severe average engine varnish and fuel dilution in the 20s
 - Labs discussed options for how to incorporate the lab into the fuel approval matrix with no defined criteria agreed on

3. <u>Fuel</u>

- M-000054 Fuel Batch Approval
 - Full tank adjustment in process
 - o Indresh is currently in India but picked up a call
 - Fuel is expected to be ready to ship within 10 days
 - Tentative forecast (best case):
 - 3/5 Fuel is ready for shipping
 - 3/10 Labs start RO 940 run
 - 3/20 Review 940 data
 - 3/24 Labs start remaining Row 1
 - 4/3 Review row 1 data
 - 4/7 Release row 2 & 3
 - 5/8 Completed fuel approval matrix
- Lab calibrations?

4. Other

- a. FCS Order through TEI
 - i. "The Pistons and Rings were ordered on November 1st. The lead time for the rings is 69 days and 127 days for the pistons."
 - ii. Rings expected January 9th, 2025
 - 1. Arrived early but missing some from one size.
 - iii. Pistons expected March 8th, 2025
- b. Pencool 2000 shortage
 - i. PenRay discontinued their entire PenCool line (2000, 3000, 4000 and the associated filters). They do not offer an alternative.

ii. Alternatives

- 1. Nalcool NalFleet 2000
- 2. DELO Extended Life coolant
- 3. Motorcraft, Dexcool, Peak
- iii. Labs to check inventory and consult internal experts
 - 1. SwRI, IAR and Afton reported at least 6 months inventory available
 - 2. This topic will be shelved until later in the year

Historical Logbook

Thistorical Edgoodk				
Date	Topic	Description	Comments	
2/12/24	-	O&H formed.		
2/29/24	Hardware	Cam cap anaerobic sealant	IL24-1	
0/5/04		Cam bearings resolved with King Bearing	Incl. SwRI bearing analysis	
3/5/24	Hardware	supply to TEI.		
3/12/24	Fuel	N-000010-1+ CofA data integrity review.	Included lab samples to Saybolt	
3/26/24	Fuel	Quarterly samples now from test cell		
4/0/24	Hardware	Piston oil hole size differences by piston size		
4/9/24	пагимаге	not statistically significant to APV		
4/16/24	Operation	Build Workshop conducted	IL24-3 and IL24-4	
5/21/24	Fuel	AO content depletion in transit		
E /21 /24	Operation	Honing data analysis uninterpretable due to	This will be revisited after 2025	
5/21/24	Operation	measurement differences	fuel approval matrix	
6/4/24	Hardware	OHT3G-096-1 brushes explained	IIIG efforts	
7/9/24	Operation	OSCR raters group imprecision reviewed		
8/27/24	Hardware	FCS order placed on pistons and rings		
8/27/24	Operation	N-10-1 approval vs PM statistical analysis		
1/7/25	Fuel	RVP adjustments vs fuel dilution		

Surface Finish – Sequence VH

February 25, 2025

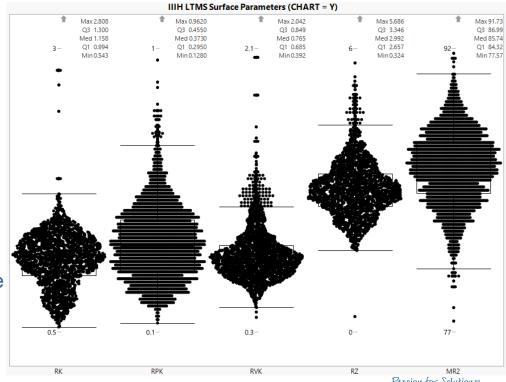
Passion for Solutions

Objective: Improve precision of the Sequence VH by converting the labs to bearing ratio curve surface parameters

Process

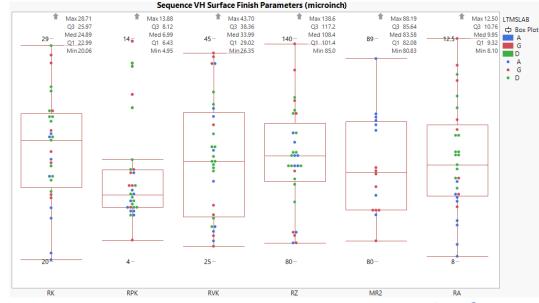
- Current: Ra = 8 to 13 μin
- Observe what's typical in the Sequence IIIH and apply that range to the available VH data
- ▲ Consider Ford's guidance on surface finish requirements
- ▲ Lab agreement to target a tighter specification without validity implications. Set new targets into the procedure following the fuel approval matrix

What do we get?


▲ A tighter dataset to reduce lab bias and set a new procedural window that complies with modern surface finish parameters and Ford's best practice

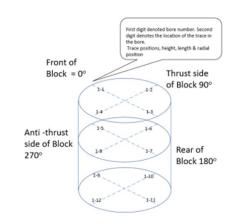
- IIIH build specification versus LTMS data
 - All cylinders represented
 - n = 2328 or 388 tests

	IIIH Spe	cs (µm)	IIIH LTI	VIS (µm)
Parameter	Min	Max	Q1	Q3
Rpk	0.12	0.74	0.29	0.45
Rk	0.51	2.03	0.99	1.3
R∨k	0.43	1.34	0.68	0.85
Rz	1.71	5.17	2.65	3.35
MR2	70% min		84%	87%


▲ Labs build within ~20% of spec range

- Convert the IIIH spec range into microinch
- Calculate the actual range usage observed in IIIH
- Apply that range to the median in Seq VH

	Sequence IIIH			
	Spec Range	Range	LTMS Range	
Parameter	(µin)	Use %	(µin)	
Rpk	24	26%	6	
Rk	60	20%	12	
Rvk	36	19%	7	
Rz	136	20%	28	
MR2	70% min			

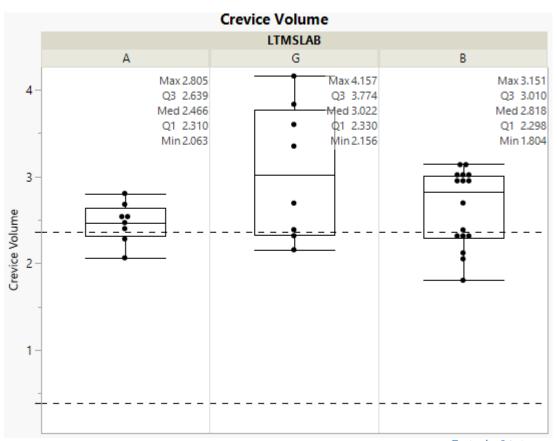

	Sequence VH		
	Nominal	Proposed Range	
Parameter	Observed	Min	Max
Rpk	7	4	10
Rk	25	19	31
Rvk	34	31	37
Rz	108	94	122

Ford's Guidance:

- Cross-hatched honing pattern shall be uniformly cut in two directions having an included angle of 30 ± 10 degrees to a plane perpendicular to the bore axis
- Surface Finish measurement locations at 4 angles inline with the bore (12 total)
 - 25mm down from top of bore
 - 75mm down from bottom of bore
 - 10mm up from the bottom of the bore
- \triangle Ra = 0.15 0.50 µm (5.9 to 19.7 µin)
- CV = 0.10 μm3/μm2 max (each individual reading)
- \triangle CV = 0.010 0.060 μ m3/ μ m2, average for each bore.
- CV = 3.94 μin3/μin2 max (each individual reading)
- △ CV = $0.39 2.36 \mu in 3/\mu in 2$, average for each bore

Crevice Volume (CV) = (100%-MR2) x Rvk / 200 (μm3/μm2)

Proposal: Labs target the proposed range without validity implications (except for Ra)


	Sequence VH			
	Nominal	Proposed Range		
Parameter	Observed	Min	Max	
Rpk	7	4	10	
Rk	25	19	31	VH median
Rvk	34	31	37	with IIIH range
Rz	108	94	122	
MR2	84	70%	6 min	
Ra	10	9	11	Tightened current spec
Crevice Volume (100-MR2)xRvk/200	2.72	0.39	2.36	Ford spec

Set new targets into the procedure following the fuel approval matrix dataset

Sequence VH Surface Finish – Additional slide not covered in meeting

- As requested with Lab B's additional data
- Dashed lines represent Ford's production limits

