

Address 100 Barr Harbor Drive PO Box C700 W. Conshohocken, PA 19428-2959 / USA *Phone* 610.832.9500 *Fax* 610.832.9666 *Web* www.astm.org

COMMITTEE D02 ON PETROLEUM PRODUCTS, LIQUID FUELS, AND LUBRICANTS

CHAIRMAN: RANDY F JENNINGS, TENNESSEE DEPT OF AGRIC, P O BOX 40627, NASHVILLE, TN 37204, UNITED STATES (615) 837-5327, FAX: (615) 837-5335, E-MAIL: RANDY JENNINGS@TN.GOV
 FIRST VICE CHAIRMAN: JAMES J SIMNICK, BP AMERICA, 150 W WARRENVILLE RD, NAPERVILLE, IL 60563, UNITED STATES (630) 420-5936, FAX: (630) 420-4831, E-MAIL: SIMNICJJ@BP.COM
 SECOND VICE CHAIRMAN: MICHAEL A COLLIER, PETROLEUM ANALYZER CO LP, 21114 Hwy 113, CUSTER PARK, IL 60481, UNITED STATES (815) 458-0216, FAX: (815) 458-0217, E-MAIL: MICHAEL.COLLIER@PACLP.COM
 SECOND SECRETARY: HIND M ABI-AKAR, CATERPILLAR INC, BLDG H3000, OLD GALENA ROAD, MOSSVILLE, IL 61552, UNITED STATES (309) 578-9553, E-MAIL: ABI-AKAR_HIND@CAT.COM
 SECRETARY: SCOTT FENWICK, NATIONAL BIODIESEL BOARD, PO BOX 104848, JEFFERSON CITY, MO 65110-4898, UNITED STATES (800) 841-5849, FAX: (517) 635-7913, E-MAIL: SFENWICK@BIODIESEL.ORG
 STAFF MANAGER: ALYSON FICK, (610) 832-9681, FAX: (610) 832-9668, E-MAIL: AFICK@ASTM.ORG

Issued: May 19, 2016 Reply to: Dan Worcester Southwest Research Institute 6220 Culebra Rd. San Antonio, TX 78238 Phone: 210.522.2405 Email: <u>dworcester@swri.org</u>

These are the unapproved minutes of the 05.17.2016 Sequence VI Surveillance Panel call.

This document is not an ASTM standard; it is under consideration within an ASTM technical committee but has not received all approvals required to become an ASTM standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of ASTM committee activities except with the approval of the chairman of the committee having jurisdiction and the president of the society. Copyright ASTM, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959.

The meeting was called to order at 8:05 AM Central Time by Nathan Moles.

Agenda

The Agenda is the included as Attachment 1.

1.0 Roll Call

The Attendance list is Attachment 2.

2.0 Approval of minutes

2.1 Approval of the minutes of the 05.10.2016 meeting.

ftp://ftp.astmtmc.cmu.edu/docs/gas/sequencevi/minutes/VIMinutes201600510ConferenceCall.pdf

MOTION: Approve the minutes from the 05.10.2016 conference call.

[Nathan Moles, Jason Bowden, second] Minutes were approved unanimously.

3.0 Action Item Review

- 3.1 OHT to provide update on current VIE inventory and service engine order. –OHT There are 11 -001 and 144 -002 engines.
- 3.2 Labs reported VID engine inventory and expected depletion date of VID engines. *-Expected life of engines range from 2016 Q2 to 2018*Lab1: 0 engine
 Lab2: 0 engine
 Lab3: 0 engines
 Lab4: 0 engine
 There will be no further action on this, so 3.2 will be removed.

4.0 Old Business

4.1 List of items to be reviewed after the Precision Matrix

Do we really need to run three RO tests to establish the new engine for LTMS? Discussion of reducing the new reference requirement to two oils, then a third oil run after a defined number of candidates.

Discussion of using FEI 2 and FEI Sum for references to match candidate pass/fail criteria. Discussion of evaluating 80/20 ratio of BL before to after for FEI 1 and 10/90 for FEI 2. Consider evaluating FEI 1 vs 100% BLB2 (or 3) and evaluating FEI 2 vs 100% BLA. Should the acceptance bands value of 1.96 be rounded up? Due to the rounding on FEI 1 and 2 the actual pass limit is 1.91 and 1.92.

SP chair and test sponsor to investigate what is needed to establish VID equivalent limits for VIE

Discussion of changing BLB1 to BLB2 delta acceptable limits.

Review impact of variable oil pressure of FEI (review prove out data to determine if it is stand or engine related)

4.2 Update from task force, to investigate alternative test procedure Sequence "VIF" that would improve 0W-16. – Dan Worcester/Satoshi Hirano SwRI is running the 7th oil on one stand and the 6th oil on the second stand. IAR is also running the 7th oil on one stand and the 6th oil on the second stand. The matrix should complete mid-June.

4.3 Update from task force to investigate option to use short blocks to supplement engine inventory. –Adrian Alfonso/Bill Buscher This effort is on-going. The tag on the engine block can be used for the engine number. The final parts for the kits are being received and will then be packaged and shipped to lab.

5.0 New Business

5.1 Discussion on precision matrix analysis. -Stats Group

See Attachment 3 for the Analysis presentation. There was special thanks for all the support and effort of the Statistics Group. The Executive Summary includes: 6 labs, 3 reference oils (1010-1, 542-2, and 544), 9 engines and 53 tests run. The average engine hours was 1086 and this was used for engine hour equation comparison. For comparison the VID engine hours was 1598. The FEI 1 precision was worse than the current VID [0.26 vs 0.12]. Data review did not support a change to the weighting of 80/20 for FEI 1 and 10/90% for FEI 2. This is for comparison of FEI to BLB 2 and BL After. There is not enough data to support changing the BLB Delta shift. Current VID limits of [-0.2 to +0.4] will be retained. Slide 16 indicates that Lab A has a different response in that BLB to BLA does not flatten out as it did at other labs. This may be a break in effect. SwRI will aslo tear down the engine to check for burned valves that may have affected runs 10 and 11. A Ln and linear engine hour correction were compared. Both would use 1086 hours average, and the Ice Hockey Stick versions would set constant at 1650 hours for FEI 1 and 1800 hours for FEI 2. Andy Ritchie of Infineum commented they were in favor of the hockey stick version with the knee above a set number of hours. FEI 2 sigma is 0.32 vs 0.14 for VID. The oils are being ranked correctly. Lab G is showing different response when multiple criteria are added [lab*oil and oil*engine hours]. FEI 2 response is not as good as the VID. The Surveillance Panel will select the engine hour correction method. BLA shift will be reviewed further. There will be a review of operational validity.

ACTION: There will be a review to look at adjusting to 1600 hours as the VID is now.

- 5.2 Discussion on small group to be formed to review ALL of the data and operational parameters for all of the matrix tests. –Mike McMillan There will be a Task Force for operational validity. Dave Glaenzer has agreed to gather validity criteria for each lab. Rich Grundza will begin a data review of the tests in the Precision Matrix.
 ACTION: Each lab will supply their test validity criteria.
- 5.3 Face to face meetings May 24th and 25th Lubrizol, Wickliffe Ohio. -Confirm attendance list

-Remote access:

https://meetings.webex.com/collabs/meetings/join?uuid=M5N3FDHOYW6LAICWAKTC7NKSVO-20XT

Call-in Number:866-528-2256Conference Code:3744024

Country	Access Type	Dial-In Number	Global Dialing Comment		
Japan	Toll-Free	0066-33-830233	JAPAN C&W USERS		
Japan	Toll-Free	0034-800-900316	JAPAN NTT USERS		
Japan	Toll-Free	00531-11-3585	JAPAN KDD USERS		

6.0 Next Meetings.

May 24th and 25th Lubrizol, Wickliffe Ohio

The meeting adjourned at 9:47 AM.

Sequence VI Surveillance Panel Conference Call Agenda May 17 @ 9:00-10:00AM EST

Call-in information is included below:

Call-in Number:	866-528-2256
Conference Code:	3744024

1.0) Roll Call

Do we have any membership changes or additions?

2.0) Approval of minutes

2.1 Approve the minutes from the May 10, 2016 Sequence VI Surveillance Panel.

ftp://ftp.astmtmc.cmu.edu/docs/gas/sequencevi/minutes/VIMinutes201605 10ConferenceCall.pdf

3.0) Action Item Review

3.1 OHT to provide update on current VIE inventory and service engine order. –OHT

3.2 Update of VID engine inventory and expected depletion date of VID engines.

-Expected life of engines range from 2016 Q3

- Lab1: 0 engines Lab2: 0 engines
- Lab3: 0 engines
- Lab4: 0 engines

4.) Old Business

4.1 List of items to be reviewed after the Precision Matrix

-Do we really need to run three RO tests to establish the new engine for LTMS?

-Discussion of reducing the new reference requirement to two oils, then a third oil run after a defined number of candidates. -Discussion of using FEI 2 and FEI Sum for references to match candidate pass/fail criteria. -Discussion of evaluating 80/20 ratio of BL before to after for FEI 1 and 10/90 for FEI 2. Consider evaluating FEI 1 vs 100% BLB2 (or 3) and evaluating FEI 2 vs 100% BLA.

-Should the acceptance bands value of 1.96 be rounded up? Due to the rounding on FEI 1 and 2 the actual pass limit is 1.91 and 1.92.

-SP chair and test sponsor to investigate what is needed to establish VID equivalent limits for VIE

-Discussion of changing BLB1 to BLB2 delta acceptable limits. -Review impact of variable oil pressure of FEI (review prove out data to determine if it is stand or engine related)

4.2 Update from task force, to investigate alternative test procedure Sequence "VIF" that would improve 0W-16. – Dan Worcester/Satoshi Hirano

4.3 Update from task force to investigate option to use short blocks to supplement engine inventory. –Adrian Alfonso/Bill Buscher

5.) New Business

5.1 Discussion on precision matrix analysis. -Stats Group

5.2 Discussion on small group to be formed to review ALL of the data and operational parameters for all of the matrix tests. –Mike McMillan

5.3 Face to face meetings May 24th and 25th Lubrizol, Wickliffe Ohio.

-Confirm attendance list

-Remote access:

https://meetings.webex.com/collabs/meetings/join?uuid=M5N3FDHOYW6LAICW AKTC7NKSVO-20XT

Call-in N Confere				
Country	Access Type	Dial-In Number	Global Dialing Comment	
Japan	Toll- Free	0066-33-830233	JAPAN C&W USERS	
Japan	Toll- Free	0034-800-900316	JAPAN NTT USERS	
Japan	Toll- Free	00531-11-3585	JAPAN KDD USERS	

6.) Next Meeting

May 24th and 25th Lubrizol, Wickliffe Ohio

7.) Meeting Adjourned

ASTM SEQUENCE VI

Name	Address	Phone/Fax/Email	Attendance
Adrian Alfonso	Intertek	Phone: (210) 838-0431	ATTEND
Voting Member		adrian.alfonso@intertek.com	
Jason Bowden	OH Technologies	Phone: (440) 354-7007	ATTEND
Voting Member		jhbowden@ohtech.com	
Timothy Caudill	Ashland	Phone: (606) 329-5708	
Voting Member		Tlcaudill@ashland.com	
Tim Cushing	General Motors	Phone: (248) 881-3518	ATTEND
Voting Member		timothy.cushing@gm.com	
David Glaenzer	Afton	Phone: (804) 788-5214	ATTEND
Voting Member		Dave.Glaenzer@aftonchemical.com	
Rich Grundza	ASTM TMC	Phone: (412) 365-1034	ATTEND
Voting Member		reg@astmtmc.cmu.edu	
Jeff Hsu	Shell	Phone: (832) 419-3482	ATTEND
Voting Member		j.hsu@shell.com	
Teri Kowalski	Toyota	Phone: (734) 995-4032	ATTEND
Voting Member		teri.kowalski@tema.toyota.com	
Dan Lanctot	TEI	Phone: (210) 690-1958	ATTEND
Voting Member		dlanctot@tei-net.com	
Brian Marks	BP Castrol	Phone: (973) 686-3325	ATTEND
Voting Member		Brian.Marks@bp.com	
Nathaniel Moles	Lubrizol	Phone: (440) 347-4472	ATTEND
Voting Member		Nathaniel.Moles@Lubrizol.com	
Andy Ritchie	Infineum	Phone: (908) 474-2097	ATTEND
Voting Member		Andrew.Ritchie@infineum.com	
Ron Romano	Ford Motor	Phone: (313) 845-4068	
Voting Member		rromano@ford.com	
Clifford Salvesen	ExxonMobil	Phone:	ATTEND
Voting Member		clifford.r.salvesen@exxonmobil.com	
Kaustav Sinha	Chevron Oronite	Phone: (713) 432-6642	
Voting Member		LFNQ@chevron.com	
Haiying Tang	Chrysler	Phone: (248) 512-0593	
Voting Member	-	HT146@Chrysler.com	
Dan Worcester	Southwest	Phone: (210) 522-2405	ATTEND
Voting Member		dan.worcester@swri.org	

ASTM SEQUENCE VI

Name	Address Ph	one/Fax/Email	Attendance
Ed Altman	ed.altman@aftonchemical.com	Afton	
Bob Campbell	Bob.Campbell@aftonchemical.com		
Todd Dvorak	todd.dvorak@aftonchemical.com	Afton	ATTEND
Lisa Dingwell	lisa.dingwell@aftonchemical.com	Afton	ATTEND
Greg Guinther	greg.guinther@aftonchemical.com	Afton	
Terry Hoffman	Terry.Hoffman@aftonchemical.com		
Christian Porter	Christian.porter@aftonchemical.com		
Jeremy Styer	Jeremy.styer@aftonchemical.com	Afton	
Amol Savant	ACSavant@ashland.com	Ashland	ATTEND
Tisha Joy	Tisha.Joy@bp.com	BP	
Don Smolenski	donald.j.smolenski@gm.com	Evonik	
Doyle Boese	Doyle.boese@infineum.com	Infineum	ATTEND
5	Phone: (908) 474-3176		
Gordon Farnsworth	gordon.farnsworth@infineum.com	Infineum	ATTEND
Mike McMillan	mmcmillan123@comcast.net	Infineum	ATTEND
Jordan Pastor	Jordan.pastor@Infineum.com	Infineum	
	Phone: (313) 348-3120		
Mike Warholic	Michael.warholic@Infineum.com	Infineum	
	Phone: 908.474.2065		
William Buscher	william.buscher@intertek.com	Intertek	
Charlie Leverett	charlie.leverett@intertek.com	Intertek	
	Phone: (210) 647-9422		
Al Lopez	Al.Lopez@intertek.com	Intertek	
Addison Schweitzer	addison.schweitzer@intertek.com	Intertek	
Bob Olree	olree@netzero.net	Intertek	
Andy Buczynsky	andrew.buczynsky@gm.com	GM	
Thomas Hickl	thomas.hickl@de.gm.com	GM	
Jeff Kettman	Jeff.kettman@gm.com	GM	
Jonas Leber	jonas.leber@opel.com	GM	
Bruce Matthews	bruce.matthews@gm.com	GM	
Mike Raney	Michael.p.raney@gm.com	GM	
	Phone: (248) 408-5384		
Angela Willis	angela.p.willis@gm.com	GM	
Jerry Brys	Jerome.brys@lubrizol.com	Lubrizol	ATTEND
Jessica Buchanan	Jessica.Buchanan@Lubrizol.com	Lubrizol	
Joe Gleason	Jog1@lubrizol.com	Lubrizol	
Greg Miranda	Greg.Miranda@lubrizol.com	Lubrizol	ATTEND
Kevin O'Malley	Kevin.OMalley@lubrizol.com	Lubrizol	ATTEND
Scott Rajala	srajala@ILAcorp.com	Idemitsu	
Dave Passmore	dpassmore@imtsind.com	IMTS	

ASTM SEQUENCE VI

Name	Address PI	none/Fax/Email	Attendance
			[]
Chris Castanien	chris.castanien@neste.com	Neste	
	Phone: (440) 290-9766		
Dwight Bowden	dhbowden@ohtech.com	OHT	ATTEND
Matt Bowden	mjbowden@ohtech.com	OHT	
Ricardo Affinito	affinito@chevron.com Phone: (510) 242-4625	Oronite	
Valerie Lieu	ValerieLieu@chevron.com	Oronite	
Valerie Lieu	Phone: (510) 242-3717	Oronne	
Jo Martinez	jogm@chevron.com	Oronite	ATTEND
JO WIAITINEZ		Oronne	
Robert Stockwell	rsto@chevron.com	Oronite	
Christine Eickstead	christine.eickstead@swri.org	SwRI	ATTEND
Travis Kostan	travis.kostan@swri.org	SwRI	ATTEND
Patrick Lang	Patrick.lang@swRI.org	SwRI	ATTEND
	Phone: (210) 522-2820		
Michael Lochte	mlochte@swri.org	SwRI	
Guy Stubbs	Guy.Stubbs@swri.org	SwRI	
Karen Haumann	Karen.Haumann@shell.com	Shell	
Scott Stap	Scott.stap@tgdirect.com	TG Direct	
Clayton Knight	cknight@tei-net.com	TEI	
Zack Bishop	zbishop@tei-net.com	TEI	
	Phone: (210) 877-0223		
Jeff Clark	jac@astmtmc.cmu.edu	TMC	
Hirano Satoshi	satoshi_hirano_aa@mail.toyota.co.		ATTEND
Jim Linden	lindenjim@jlindenconsulting.com	Toyota	ATTEND
	Phone: (248) 321-5343		
Mark Adams	mark@tribologytesting.com	Tribology Testing	ATTEND
Tom Smith		Valvoline	
Hap Thompson	Hapjthom@aol.com	VIE Facilitator	
Chris Taylor	Chris.taylor@vpracingfuels.com	VP Racing Fuels	

VIE Precision Matrix Analysis

Industry Statistician Team Date: 05-17-2016

Statistics Group

- Arthur Andrews, ExxonMobil
- Doyle Boese, Infineum
- Jo Martinez, Chevron Oronite
- Kevin O'Malley, Lubrizol
- Martin Chadwick, Intertek
- Richard Grundza, TMC
- Lisa Dingwell, Afton
- Todd Dvorak, Afton
- Travis Kostan, SwRI

VIE Analysis Check List – Answers to SP Questions

- Do we really need to run three RO tests to establish the new engine for LTMS? LTMS Topic
- Discussion of reducing the new reference requirement to two oils, then a third oil run after a defined number of candidates. LTMS Topic
- Discussion of using FEI 2 and FEI Sum for references to match candidate pass/fail criteria. LTMS Consensus reached in Stats team to continue with FEI1 and FEI2
- Discussion of evaluating 80/20 ratio of BL before to after for FEI 1 and 10/90 for FEI 2. Consider evaluating FEI 1 vs 100% BLB2 (or 3) and evaluating FEI 2 vs 100% BLA. Included in this presentation
- Should the acceptance bands value of 1.96 be rounded up? Due to the rounding on FEI 1 and 2 the actual pass limit is 1.91 and 1.92. LTMS Topic
- SP chair and test sponsor to investigate what is needed to establish VID equivalent limits for VIE TBD
- Discussion of changing BLB1 to BLB2 delta acceptable limits. Included in this presentation
- Review impact of variable oil pressure of FEI (review prove out data to determine if it is stand or engine related) Included in this presentation
- Update Appendix K (update scheduled at next SP meeting in Wickliffe)

Executive Summary

- Precision Matrix (PM) Analysis Highlights:
 - No compelling rationale to change current 80/20 baseline weighting for FEI1 and 10/90 baseline weighting for FEI2
 - VIE Precision¹ with Ln(Engine Hours) Adjustment option:
 - FEI1 and FEI2 RMSE is 0.26 and 0.32, respectively
 - Reference oil LSMeans indicate that (3) FEI1 and (1) FEI2 pair-wise contrast(s) are significantly different
 - VIE Precision¹ with Ice Hockey Stick (Engine Hours) Adjustment option:
 - FEI1 and FEI2 RMSE is 0.255 and 0.295, respectively
 - Reference oil LSMeans indicate that (3) FEI1 and (2) FEI2 pair-wise contrast(s) are significantly different
 - Both the Sequence VID and VIE show oil discrimination of over 4 standard deviations for FEI1, which is a comparatively good amount of discrimination. The VIE FEI2 shows oil discrimination of 1 standard deviation, which is less discrimination than VID FEI2, and less than most GF-5 PCMO engine tests.

¹VIE contrast with VID (PM) RMSE of 0.12 and 0.14, respectively

Executive Summary

- Precision Matrix (PM) Analysis Highlights (continued):
 - No Significant difference between test labs
 - No significant difference between engines within the same test lab; Lab G engines differ in FEI1 when additional significant interactions are included in the model (lab*oil & oil*engine hours)
 - FEI results suggest labs do not discriminate oils the same way, though sample size is small and inferences can be impacted by variation
 - FEI1 oil discrimination changes over the range of engine hours
 - Weak evidence that oil pressure differences between consecutive test runs on the same engine may be related to changes in FEI2 test results
 - Two unusual (studentized deleted) residuals resulted on Engine128 in Lab A

Agenda

- Review PM Data for Analysis
- Evaluating Baseline Weighting Scenarios
- Evaluating Alternatives for Engine Hour Adjustment
- Analyzing PM Data
 - FEI1 LnEngHr Model
 - FEI1 Ice Hockey Stick Model
 - FEI2 LnEngHr Model
 - FEI2 Ice Hockey Stick Model
 - Comparing VIE Precision and Oil Discrimination with other Tests

Agenda

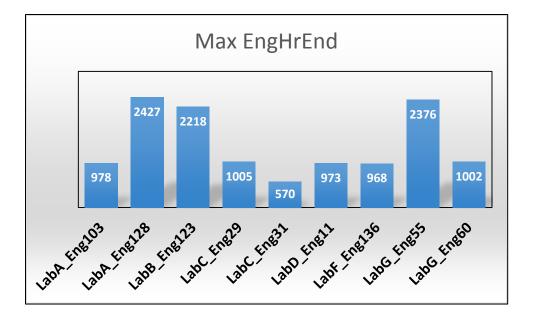
Review PM Data for Analysis

- Evaluating Baseline Weighting Scenarios
- Evaluating Alternatives for Engine Hour Adjustment
- Analyzing PM Data
 - FEI1 LnEngHr Model
 - FEI1 Ice Hockey Stick Model
 - FEI2 LnEngHr Model
 - FEI2 Ice Hockey Stick Model
 - Comparing VIE Precision and Oil Discrimination with other Tests

Review PM Data for Analysis

- Precision Matrix data summary:
 - 6 Labs {A, B, C, D, F, G}
 - 3 Reference Oils {1010-1, 542-2, 544}
 - 9 Engines {103, 11, 123, 128, 136, 29, 31, 55, 60}
 - Within lab statistical tests 3 Labs with engine pairs
 - Lab A: 103 vs. 128
 - Lab C: 29 vs. 31
 - Lab G: 55 vs. 60
 - Data set total sample size: 53

Review PM Data for Analysis


- Precision Matrix (PM):
- On 5-10-16 the surveillance panel concluded 53 tests were valid (these are shown in green).
- Table is from Frank Faber's 5-11-16 matrix update email

	Run Order	A 1	A 2	G 1	G 2	В	D	с	F	
Step	SOT Engine Hours	150	150	150	150	150	150	150	150	Eng. Hrs
	1	544 113244-VIE	1010-1 110587-VIE	542-2 105705-VIE	544 113224-VIE	542-2 110003-VIE	542-2 110588-VIE	544 113298-VIE 544 116040-VIE (new engine)	1010-1 113223-VIE	350
	2	544 113247-VIE	1010-1 110725-VIE	1010-1 113235-VIE	542-2 105704-VIE	544 113258-VIE	542-2 113293-VIE	1010-1 113300-VIE 1010-1 113301-VIE (new engine)	544 113220-VIE	550
1	3	542-2 111451-VIE	542-2 111176-VIE	1010-1 113236-VIE	1010-1 108989-VIE	1010-1 110595-VIE	544 113292-VIE	542-2 113299-VIE Oil Con. Engine Abandoned 542-2 114421-VIE (new engine)	544 113221-VIE	750
	4	1010-1 110726-VIE	544 113243-VIE	544 113225-VIE	1010-1 113234-VIE	544 113259-VIE	1010-1 110589-VIE	542 114422-VIE (new engine)	542-2 113222-VIE	950
	5	544 113246-VIE	544 113245-VIE Failed Eng.		542-2 113229-VIE	544 113260-VIE				1150
	6	1010-1 110727-VIE	1010-1		542-2 113230-VIE	542-2 110004-VIE				1350
2	7	1010-1 113252-VIE	544		544 113226-VIE	542-2 113261-VIE				1550
2	8	542-2 113248-VIE	542-2		544 113227-VIE	1010-1 113265-VIE				1750
	9	542-2 113249-VIE	542-2		1010-1 113238-VIE	1010-1 113266-VIE				1950
	10	544 115022-VIE	1010-1		542-2 113232-VIE	544 116027-VIE				2150
	11	1010-1 113254-VIE	1010-1		544 113228-VIE					2350
	EOT Engine Hours	950	2350	950	2350	2150	950	950	950	Total Runs
	Runs/ Engine	4	11	4	11	10	4	4	4	52

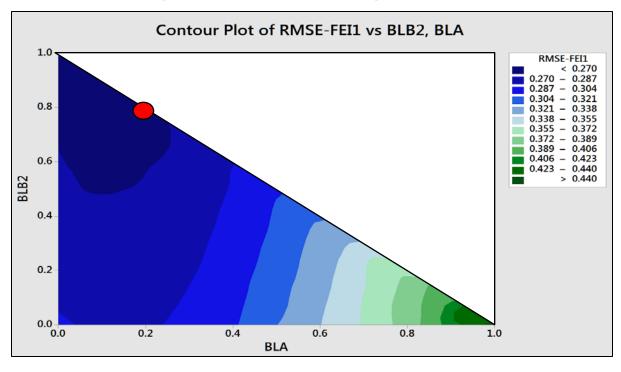
Test Reported

Review PM Data for Analysis

- Precision Matrix data summary (continued):
 - Average engine hour age¹:
 - PM Average EngHrs = 1086
 - PM Average Ln(EngHrs) Transform = $6.83 (e^{6.83} = 925 \text{ hours})$

¹For reference:VID $Ln(EngHrs) = 7.37 (e^{7.37} = 1598 \text{ hours})$

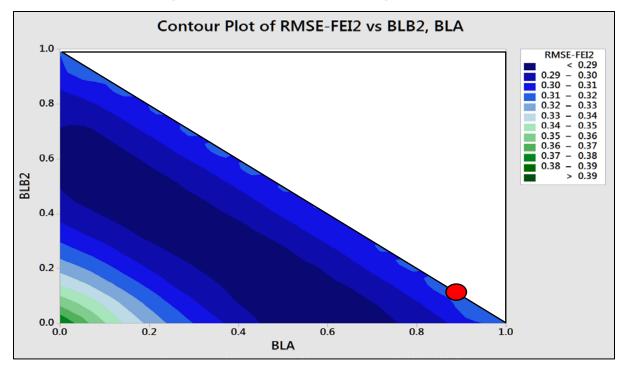
Agenda


- Review PM Data for Analysis
- Evaluating Baseline Weighting Scenarios
- Evaluating Alternatives for Engine Hour Adjustment
- Analyzing PM Data
 - FEI1 LnEngHr Model
 - FEI1 Ice Hockey Stick Model
 - FEI2 LnEngHr Model
 - FEI2 Ice Hockey Stick Model
 - Comparing VIE Precision and Oil Discrimination with other Tests

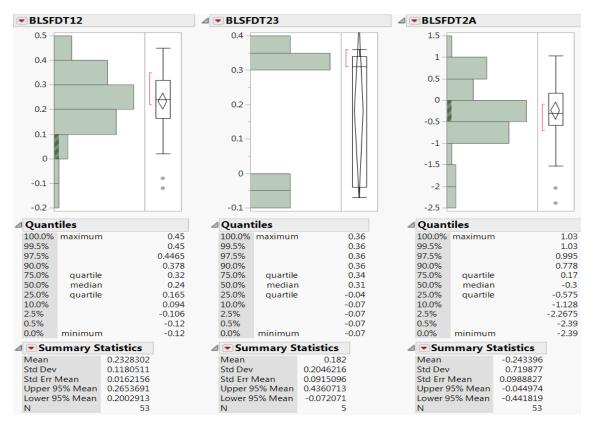
Evaluating Baseline Weight Scenarios

- Excel Program developed to evaluate 10,000 different weight combinations of BLB1, BLB2, and BLA
- Excel based prediction model for precision (RMSE) included Lab, Eng(Lab), Oil, and Ln(EngHr) factors
- All BL weight combinations summed to a value of 1.0
- For those runs that included a BLB3, BL weights were applied to BLB2 & BLB3 in lieu of BLB1 & BLB2
- Results are shown on the following slides

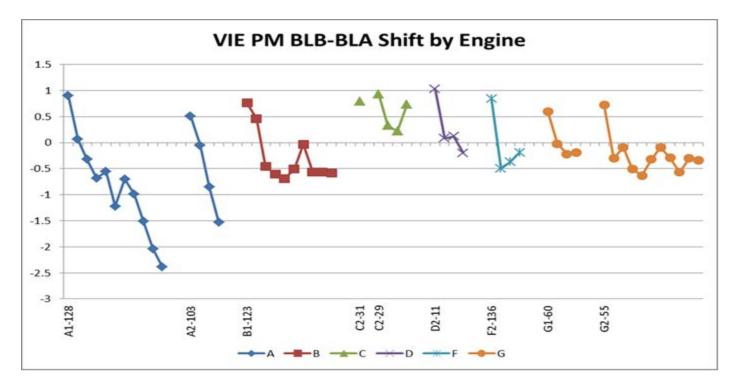
Evaluating Baseline Weight Scenarios


- Plot of RMSE vs. baseline weight combinations for FEI1 shown below
 - RMSE of weights can be interpreted from plot- if BL weights sum to 1.0
 - VID FEI1 Baseline weights of 80% & 20% shown in red circle
 - Other BL weighting combinations provide slight improvement to precision
 - No compelling rationale to change current FEI1 Baseline weights

13


Evaluating Baseline Weight Scenarios

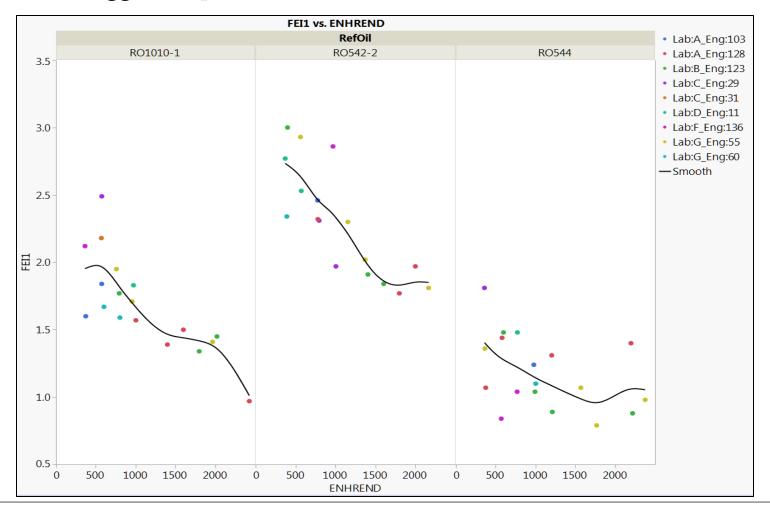
- Plot of RMSE vs. baseline weight combinations for FEI2 shown below
 - RMSE of weights can be interpreted from plot- if BL weights sum to 1.0
 - VID FEI2 Baseline weights of 10% & 90% shown in red circle
 - Other BL weighting combinations provide slight improvement to precision
 - No compelling rationale to change current FEI2 Baseline weights


BL Shift

- Not enough data to change limits at this time
- BLB12 Shift Range: (-0.12, 0.45); BLB23 Shift Range: (-0.07, 0.36)
- BLA Shift Range: (-2.39, 1.03)

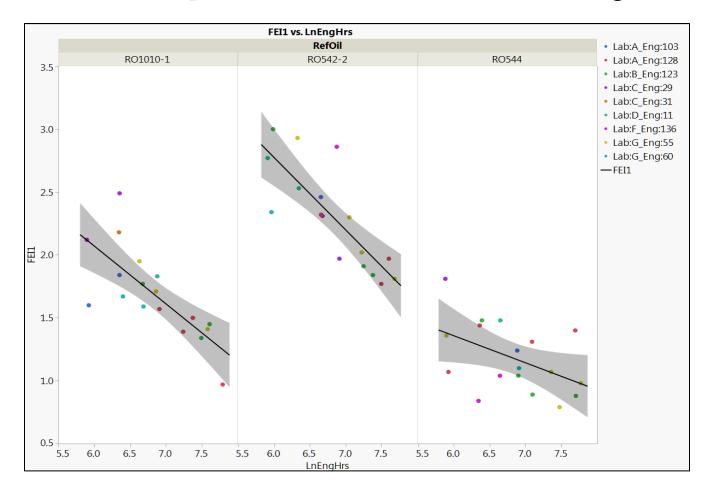
BLB-BLA Shift by Engine

- Lab A profile appears to be different than the other labs
- The first BLB-BLA shift in each engine is the largest
- SP should review BLB-BLA shift

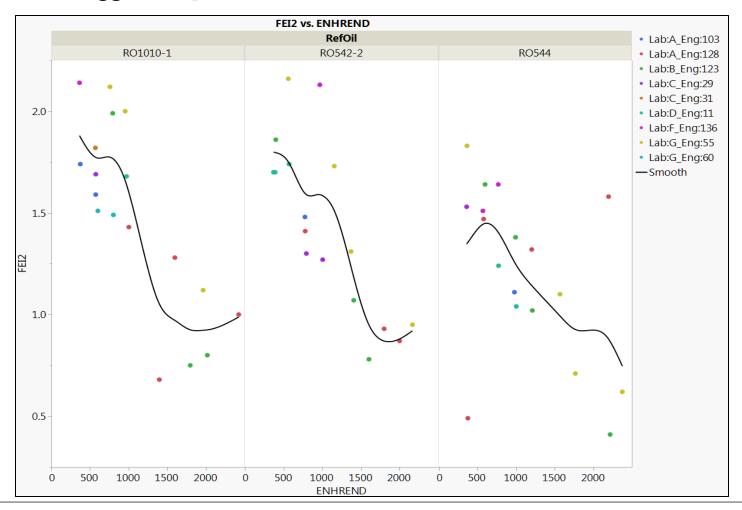


Agenda

- Review PM Data for Analysis
- Evaluating Baseline Weighting Scenarios
- Evaluating Alternatives for Engine Hour Adjustment
- Analyzing PM Data
 - FEI1 LnEngHr Model
 - FEI1 Ice Hockey Stick Model
 - FEI2 LnEngHr Model
 - FEI2 Ice Hockey Stick Model
 - Comparing VIE Precision and Oil Discrimination with other Tests

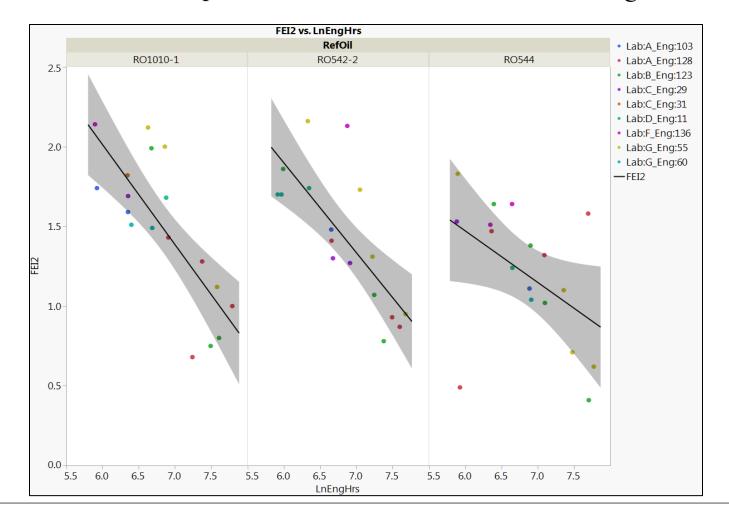

- Analysis of the FEI1 and FEI2 model *residuals* were explored to identify the best method for Engine Hour Adjustment
- The residuals were based on a model fit with LTMSLAB, IND, and ENGNO(LTMSLAB) factors
- Various transforms of engine hours were evaluated (Ln, power, etc.) to try to approximate the relationship of engine age on FEI test results
- Highlights of a natural log transform and Ice Hockey Stick (IHS) are shown on the following slides

- FEI1 Ice Hockey Stick (IHS) Engine hour adjustment approach
 - Data suggests a possible horizontal line at 1650 hours

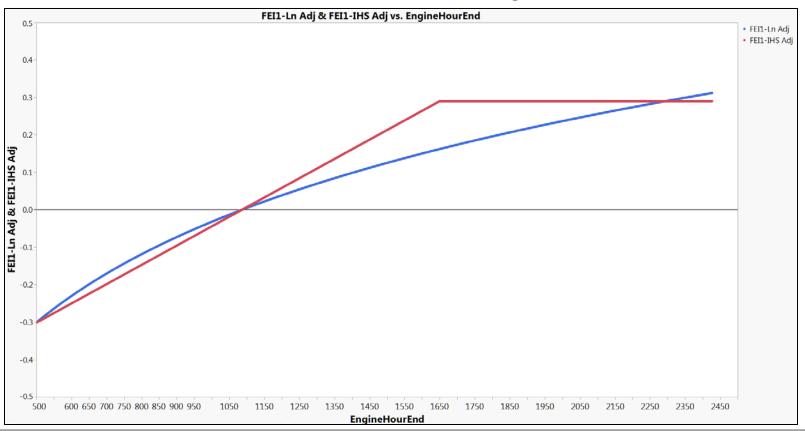


19

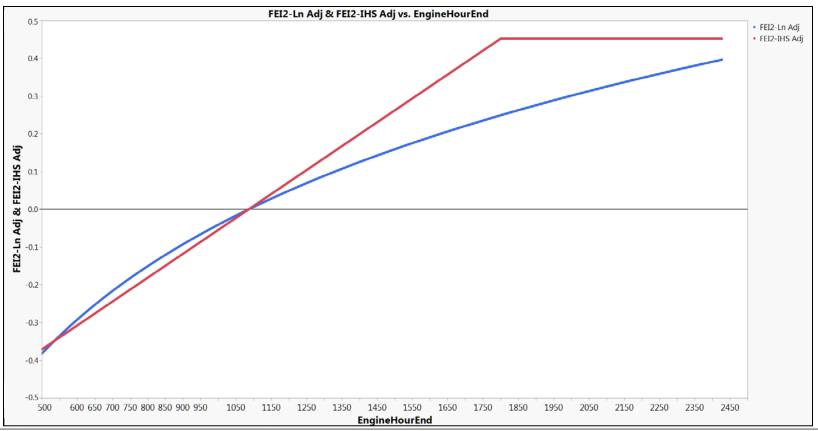
- Natural Log Engine hour adjustment approach
 - Linear relationship exhibited between FEI1 and Ln(EngHrEnd)



- FEI2 Ice Hockey Stick (IHS) Engine hour adjustment approach
 - Data suggests a possible horizontal line at 1800 hours


21

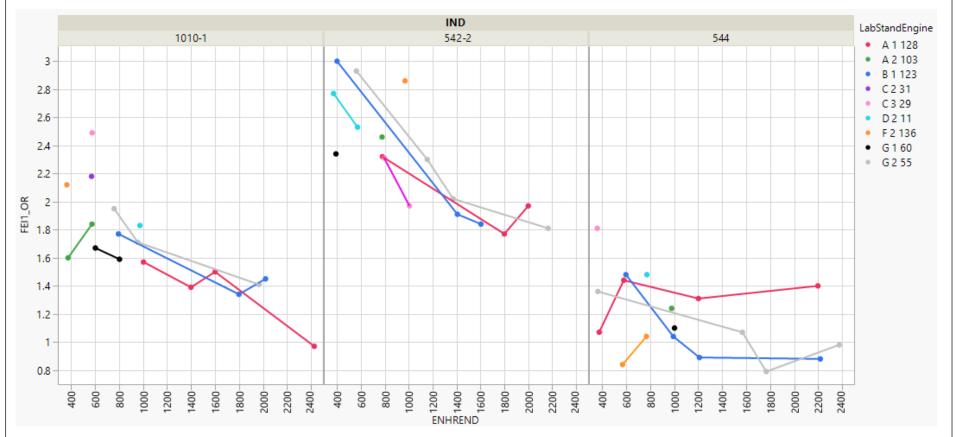
- Natural Log Engine hour adjustment approach
 - Linear relationship exhibited between FEI1 and Ln(EngHrEnd)



22

- FEI1 Adjustment approaches are summarized below
 - Both adjustment approaches are aligned to EngHr Average of 1086
 - FEI1 Ln Adj = 0.388*(Ln(EngHrs)-Ln(1086))
 - FEI1 IHS Adj = 0.000514*(min(1650, EngHrs)-1086)

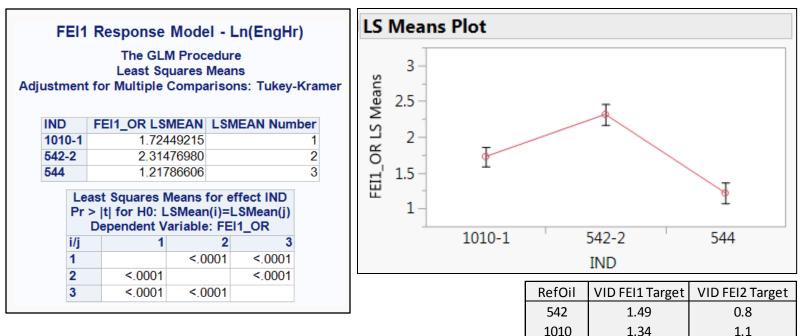
- FEI2 Adjustment approaches are summarized below
 - Both adjustment approaches are aligned to EngHr Average of 1086
 - FEI2 Ln Adj = 0.493*(LN(EngHrs)-Ln(1086))
 - FEI2 IHS Adj = 0.000633*(min(1800, EngHrs)-1086)

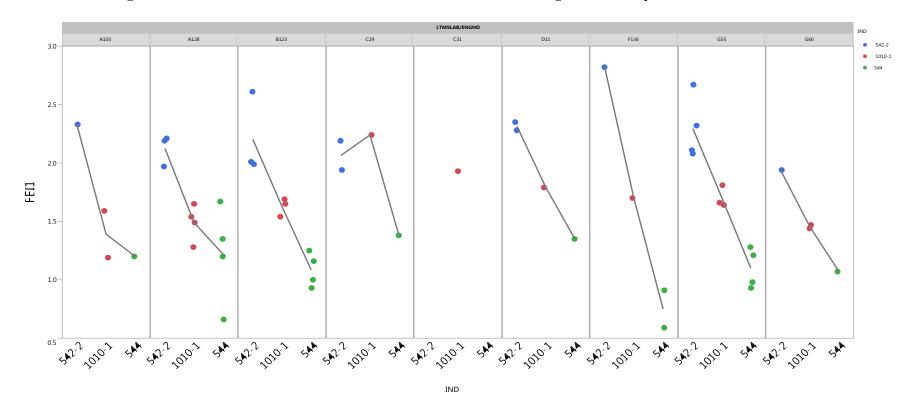

- Review of correction factor approaches for EngHrEnd indicates that no one engine hour transform for FEI1 or FEI2 performs overwhelmingly better in terms of RMSE, Rsquare, or model fit residual diagnostics.
- Additional reference tests will clarify the true engine hour effect at higher engine hours.
- At this time, it is recommend that Subject Matter Experts (SMEs) in the Surveillance Panel choose from one of the two proposed engine hours adjustment methods (IHS vs. Ln) for FEI1 and FEI2.

Agenda

- Review PM Data for Analysis
- Evaluating Baseline Weighting Scenarios
- Evaluating Alternatives for Engine Hour Adjustment
- Analyzing PM Data
 - FEI1 LnEngHr Model
 - FEI1 Ice Hockey Stick Model
 - FEI2 LnEngHr Model
 - FEI2 Ice Hockey Stick Model
 - Comparing VIE Precision and Oil Discrimination with other Tests

Analyzing PM Data


• Plot of FEI1_OR


- Overall ANOVA Summary of FEI1 data:
 - Ln(EngHr) & Reference Oil factors are statistically Significant
 - VIE PM Test Precision: 0.26 (contrast w/VID PM test precision of 0.12)

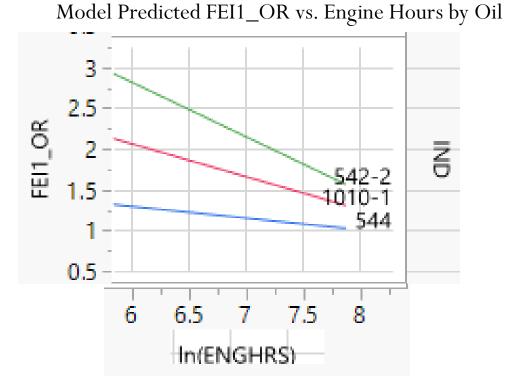
				Clas	s Le	vel Inf	orm	ation				
	Clas	S	L	evels	s Val	ues						
	IND			;	3 101	0-1 54	2-2	544				
	LTM	SLA	3	(6 A B	CDF	G					
	ENG	NO		(9 11 3	29 31 (55 6	0 103 12	3 128 13	36		
		N			5 Oh		ion	Deed	52			
									53			
	Number of Observations Used 53											
Sour	Source DF Sum of Squares Mean Square F Value Pr > I											
Mod	el		11		14.29	502745	1	29954795	18.91	<.0001		
Erro	r		41		2.818	825179	0	.06873785				
Corr	rected	Total	52		17.113	327925						
		R-Sq	uare	Coef	f Var	Root N	ISE	FEI1_OR	Mean			
		-			31859			_	11509			
Sou	irce			DF	Туре	e III SS	Mea	an Square	F Value	Pr > F		
LnE	EngHr			1	1.88	819141	1	.88819141	27.47	<.0001		
IND)			2	10.23	490298	5	.11745149	74.45	<.0001		
LTN	ISLA	3		5	0.30	655752	0	.06131150	0.89	0.4954		
ENC	GNO(L	TMSL	AB)	3	0.14	145292	0	.04715097	0.69	0.5658		

- Difference between reference oil LsMeans for FEI1:
 - All oil contrasts are significantly different
 - $\{544 < 1010 1 < 542 2\}$
 - Higher VIE FEIs as compared to VID is partially due to correction at reduced number of engine hours

- FEI1Adj Oil Discrimination by Engine
 - Contrast below plot with oil ranking of $\{544 < 1010 1 < 542 2\}$
 - Oil discrimination is not consistent across labs; in particular, Lab C, though sample size is small and inferences can be impacted by variation

- Difference between test Lab LSMeans for FEI1
 - No significant difference between Labs

	FEI1 F				Ln(Eng	Hr)		LS			Plot							
djus	tment fo	Leas	GLM Pi t Squar ple Con	es Mea	-	ey-Kram	er	Means	3 2.5	-			Ŧ					
LTN	ISLAB	FEI1_C	RLSM	EAN L	SMEAN	Number		LS	2						Т		-	
Α			1.66128	8306		1		OR OR	_	-	T	J			-			T
3			1.69858	8887		2			1.5	-	Ľ	ľ	-		T		Ĭ	¥
C			1.9392	1214		3		FEIL	1.0	-							-	
D			1.8631	0364		4			1	_								
F			1.6968	9483		5			-									
G			1.6551	7348		6					А	В	С		D	1	F	G
	Pr >	t for H	0: LSM	ean(i)=l	ct LTMS LSMean(LTN	/ISLAE	5			
	D	epende	nt Varia	ble: FE	I1_OR													
i/j	1	2	3	4	5	6												
1		0.9995			0.9999	1.0000												
	0.9995	0 750 1	0.7534		1.0000													
	0.5733		0.0000	0.9989	0.8274													
	0.7821			0.0400	0.9468													
	0.9999					0.9998												
6	1.0000	0.9989	0.5526	0.7585	0.9998													

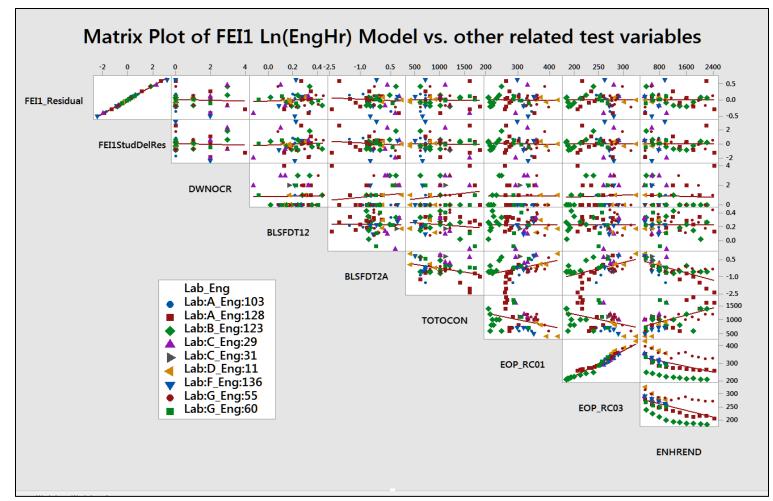

- LSMean difference between engines within the same Lab
 - Contrasts: {A-103 vs. A-128}, {C-29 vs. C-31}, {G-55 vs. G-60}
 - Conclusion: No Significant¹ Difference between engines within a Lab
 - Lab G engines significantly differ when additional significant model terms are added (lab*oil & oil*engine hours interactions)

ENGNO	LTMSLAB	FEI1_OR LSMEAN	LSMEAN Number			Le		es Means f I0: LSMear					
103	Α	1.64572710	1					ependent			- 14		
128	Α	1.67683903	2	i/j	1	2	3	. 4	5	- 6	7	8	9
123	В	1.69858887	3			-0.19309	-0.32557	-1.14148	-1.26292	-1.16371	-0.274	-0.71036	0.515744
29	С	1.85895265	4	1	(1.0000	1.0000	0.9639	0.9363	0.9596	1.0000	0.9984	0.9998
31	С	2.01947163	5		0.193092	J	-0.18958	-1.12792	-1.20383	-1.15226	-0.12457	-0.74391	0.790552
11	D	1.86310364	6	2	1.0000	0.189578	1.0000	0.9663	0.9511	0.9619	1.0000	0.9977	0.9966
136	F	1.69689483	7	3	1.0000	1.0000		0.9849	0.9673	0.9824	1.0000	0.9998	0.9906
55	G	1.76024335	8		1.14148		0.989097	0.0040	-0.53599	-0.02239	0.8678		
60	G	1.55010360	9	4	0.9639	0.9663	0.9849		0.9998	1.0000	0.9935	0.9994	0.7700
	0	1.00010000			1.262924	1.203834	1.122453	0.535986		0.522165	1.077508	0.90764	1.585473
S Means	Diat			5	0.9363	0.9511	0.9673	0.9998		0.9998	0.9743	0.9913	
.5 weans	Plot				1.163713		1.0136				0.89003		
3 –				6	0.9596	0.9619	0.9824	1.0000	0.9998		0.9923	0.9992	0.7573
2.5 –		_		_	0.273997	0.12457	-0.01048		-1.07751	-0.89003		-0.3947	0.78599
≌ 2.5 – ≊ _		T		1	1.0000	1.0000	1.0000	0.9935	0.9743	0.9923	0.394703	1.0000	0.9967
2 OR LS	T	I	тт	8	0.710356	0.743914	0.537604	-0.61551 0.9994	-0.90764 0.9913	-0.64065	1.0000		1.30988
ő				8	-0.51574	-0.79055	-0.91871	-1.65332	-1.58547	-1.67548	-0.78599	-1.30988	
H ^{1.5} -	1	- 1	⊥ ľ ∣	9	0.9998	0.9966	0.9906	0.7700	0.8069	0.7573	0.9967	0.9226	
1-													
[A]]103 '[A]128 '[B]	123 [C]29 [C]31 [D]11	[F]136 [G]55 [G]60	^{1}I	Familyw	vise erro	or rate	critical	t of 2.	49 sel	ected fo	or 3 coi	ntrasts
		ENGNO[LTMSLAB]			-								
				I						se Bonfer			
									Error Rat		ntrasts		ritical t
									0.05	0.0	0167	41	2.496

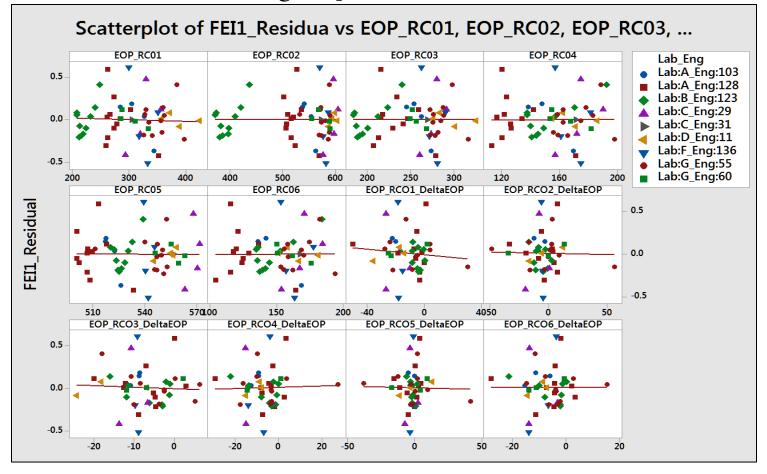
0.10

0.0333

• When additional significant model terms are added to the model (lab*oil & oil*engine hours interactions) we find that oil discrimination changes over the range of hours



Model terms:


33

Effect rests					
			Sum of		
Source	Nparm	DF	Squares	F Ratio	Prob > F
LTMSLAB	5	5	0.2560614	1.5378	0.2090
IND	2	2	6.5647797	98.5648	<.0001*
ENGNO[LTMSLAB]	3	3	0.2624177	2.6267	0.0692
In(ENGHRS)(5.85793,7.87702)	1	1	1.5782034	47.3908	<.0001*
LTMSLAB*IND	10	10	1.3710040	4.1169	0.0013*
In(ENGHRS)*IND	2	2	0.5871054	8.8149	0.0010*

- Matrix Plot of FEI1 residuals vs. other related test variables
 - No observable trend that correlates with FEI1 residual data

- Plot of FEI1 residuals vs. oil pressure variable data
 - Oil pressure $delta_{(t)} = [Eng Oil Pressure]_{(t)} [Eng Oil Pressure]_{(t-1)}$
 - No evidence found relating oil pressure to FEI1 residuals

FEI1 Precision (LnEngHr Model)

Model: Oil, Lab, Engine(Lab), LnEngHr

Model RMSE

- s = 0.26
- VIE Prove-out s=0.21
- VID Precision Matrix s=0.14
- VID current data s=0.12

Repeatability

- s = 0.26
- r = 0.72

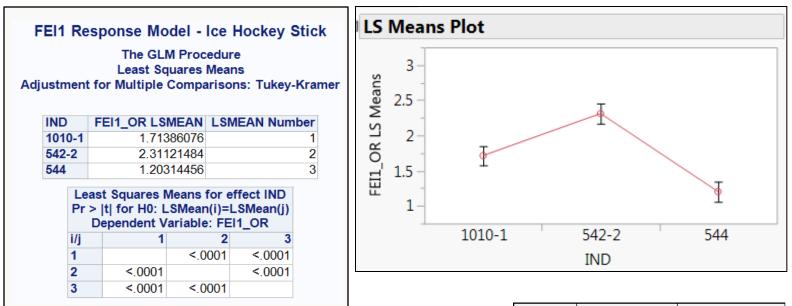
Reproducibility

- s = 0.26
- R = 0.72

FEI1 Precision (LnEngHr Model)

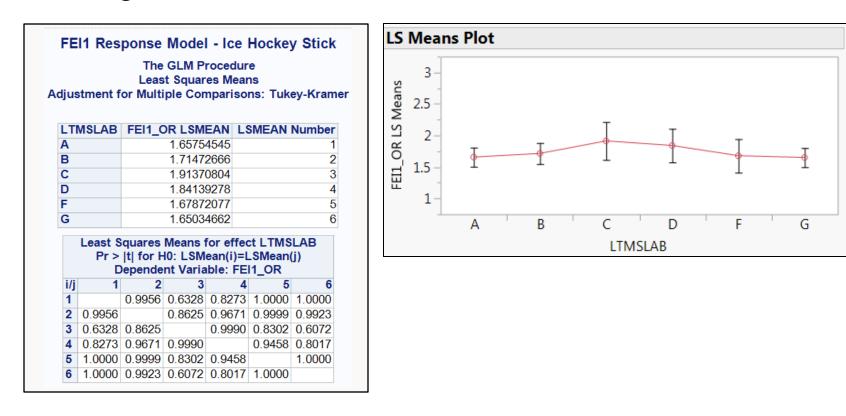
Based upon the Seq. VIE and VID pooled standard deviations (s_r) and ASTM's repeatability (r), there is no significant difference between an FEI1 result¹ of 1.3 - 2.0 for the VIE and 1.6 - 2.0 for the VID.

Note 1: An FEI1 of 2.0 was arbitrarily selected in the calculations as the upper pass/fail limit.


Agenda

- Review PM Data for Analysis
- Evaluating Baseline Weighting Scenarios
- Evaluating Alternatives for Engine Hour Adjustment
- Analyzing PM Data
 - FEI1 LnEngHr Model
 - FEI1 Ice Hockey Stick Model
 - FEI2 LnEngHr Model
 - FEI2 Ice Hockey Stick Model
 - Comparing VIE Precision and Oil Discrimination with other Tests

- Overall ANOVA Summary of FEI1 data:
 - FEI1_EnHrEnd & Reference Oil factors are statistically Significant
 - VIE PM Test Precision: 0.26 (contrast w/VID PM test precision of 0.12)


			0	Clas	s Leve	el Info	rmat	tion		
Cla	ass		Le	vels	Value	es				
IN	D			3	1010	-1 542	2-2 54	14		
LT	MS	LAB		6	ABO	DF	G			_
EN	IGN	0		9	11 29	31 5	5 60	103 123	128 136	
			_						-	
					f Obse				3	
		Nu	mb	er o	f Obse	ervati	ons	Used 5	3	
Source	e		DF	Su	m of S	quares	Mea	n Squar	F Value	Pr > F
Model	-		11			825486		.3125686		<.0001
Error			41	1	2.67	502439		.0652445		
Correc	cted	Total	52	2	17.11	327925	5			
		D Car	IOT		Sf Vor	Deat	MOE		Moon	
	-	-			92425		5430	FEI1_OF	711509	
	L	0.040	000		.52420	0.20	0400	1.	111003	
Source				DF	Туре	III SS	Mea	n Square	F Value	Pr > F
FEI1_Er	nhrE	nd		1		41881		03141881		<.0001
IND					10.425			21276454	79.90	<.0001
LTMSL				5		23417		05304683		0.5473
ENGNO	(LTI	MSLA	B)	3	0.183	07782	0.0	06102594	0.94	0.4323

- Difference between reference oil LsMeans for FEI1:
 - All oil contrasts are significantly different
 - $\{544 < 1010 1 < 542 2\}$

RefOil	VID FEI1 Target	VID FEI2 Target
542	1.49	0.8
1010	1.34	1.1

- Difference between test Lab LSMeans for FEI1
 - No significant difference between Labs

- LSMean difference between engines within the same Lab
 - Contrasts: {A-103 vs. A-128}, {C-29 vs. C-31}, {G-55 vs. G-60}
 - Conclusion: No Significant¹ Difference between engines within a Lab
 - Lab G engines significantly differ when additional significant model terms are added (lab*oil & oil*engine hours interactions)

ENGN	O LTMSLAB	FEI1_OR LSMEAN	LSMEAN Number			Le		es Means f 0: LSMear			.TMSLAB) > ltl		
103	Α	1.62529207	1					ependent			1-1		
128	Α	1.68979883	2	i/j	1	2	3	4	5	6	7	8	9
123	В	1.71472666	3			-0.40743	-0.56022	-1.17878		-1.18745			0.541241
29	С	1.83981751	4	1	0 407405	1.0000	0.9997	0.9566	0.9381	0.9547	1.0000	0.9895	0.9998
31	C	1.98759856	5		0.407425	J	-0.22306	-0.94611	-1.06894	-0.95397			1.029497
11	D	1.84139278	6	2	1.0000 0.560224	0 223061	1.0000	0.9886	0.9755	0.9880		0.9973	0.9806
136	F	1.67872077	7	3	0.9997	1.0000		0.9967	0.9862	0.9965	1.0000	0.9998	0.9568
					1.178777		0.785115	0.3307	-0.50636	-0.00872			1.715964
55	G	1.77316530	8	4	0.9566	0.9886	0.9967		0.9999	1.0000	0.9926	1.0000	0.7335
60	G	1.52752793	9		1.256346	1.068945	0.974944	0.506359		0.501037	1.058715	0.767127	1.594822
LS Means	s Plot			5	0.9381	0.9755	0.9862	0.9999		0.9999	0.9769	0.9972	0.8020
LS IVICATI	SFIOL				1.187451	0.953971	0.793395		-0.50104		0.894099	0.43231	1.724526
3 -				6	0.9547	0.9880	0.9965	1.0000	0.9999		0.9921	1.0000	0.7284
Means 2.5		_			0.293662	-0.07008	-0.22675	-0.88545	-1.05872	-0.8941		-0.59942	
Σ 2.5				7	1.0000 0.93365	1.0000	1.0000 0.523074	0.9926	0.9769	0.9921	0.599423	0.9995	0.9952
OR LS	т т т		ТІ	8	0.93305	0.763229	0.9998	-0.42323	0.9972	1.0000	0.599423		1.557643 0.8212
				•	-0.54124	-1.0295	-1.17749	-1.71596	-1.59482	-1.72453		-1.55764	
E ^{' 1.5} -	T		- I	9	0.9998	0.9806	0.9568	0.7335	0.8020	0.7284	0.9952		
1-													
[A]103 [A]128 [B]1	23 [C]29 [C]31 [D]11 ENGNO[LTMSLAB]	[F]136 [G]55 [G]60	1	Familyv	vise err	or rate	critica	1 t of 2	.49 se	lected f	for 3 co	ntrasts
									Familywi	se Bonfer	onni for		
									Error Rat		ntrasts	DOF C	critical t

0.05

0.10

0.0167

0.0333

41

41

2.496

2.202

• When additional significant model terms are added to the model (lab*oil & oil*engine hours interactions) we find that oil discrimination changes over the range of hours

	· · · ·								
	3 -	-							
~	2.5 -	-		-	_	_			
FEI1 OR	2-	-					-	5	42-2
	1.5 -			_					10-1
	1-								544
	0.5 -								
		400-	-009	-008	1000-	1200-	1400-	1600-	1800-
					Engi	nes⊦	IRS		
				_		IHS		_	

Model terms:

		Sum of		
Nparm	DF	Squares	F Ratio	Prob > F
5	5	0.2298268	1.4982	0.2210
2	2	7.0439007	114.7932	<.0001*
3	3	0.2448488	2.6602	0.0668
10	10	1.3659171	4.4520	0.0008*
1	1	1.6223632	52.8787	<.0001*
2	2	0.4982961	8.1206	0.0016*
	5 2 3	5 5 2 2 3 3	Nparm DF Squares 5 5 0.2298268 2 2 7.0439007 3 0.2448488 10 10 1.3659171 1 1.6223632	Nparm DF Squares F Ratio 5 5 0.2298268 1.4982 2 2 7.0439007 114.7932 3 0.2448488 2.6602 10 1.3659171 4.4520 1 1.6223632 52.8787

Model Predicted FEI1_OR vs. Engine Hours by Oil

FEI1 Precision (IHS Model)

Model: Oil, Lab, Engine(Lab), min(1650, EngHr)

Model RMSE

- s = 0.26
- VIE Prove-out s=0.21
- VID Precision Matrix s=0.14
- VID current data s=0.12

Repeatability

- s = 0.26
- r = 0.72

Reproducibility

- s = 0.26
- R = 0.72

FEI1 Precision (IHS Model)

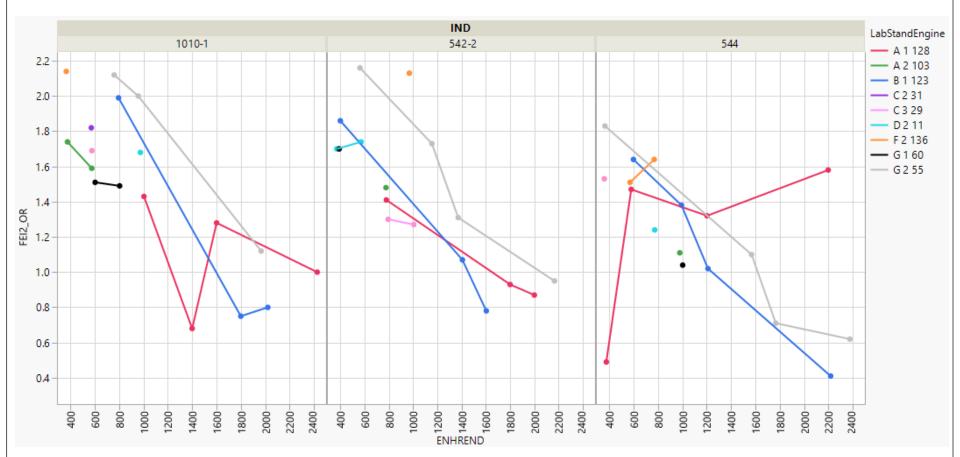
Based upon the Seq. VIE and VID pooled standard deviations (s_r) and ASTM's repeatability (r), there is no significant difference between an FEI1 result¹ of 1.3 – 2.0 for the VIE and 1.6 – 2.0 for the VID.

Note 1: An FEI1 of 2.0 was arbitrarily selected in the calculations as the upper pass/fail limit.

Agenda

- Review PM Data for Analysis
- Evaluating Baseline Weighting Scenarios
- Evaluating Alternatives for Engine Hour Adjustment

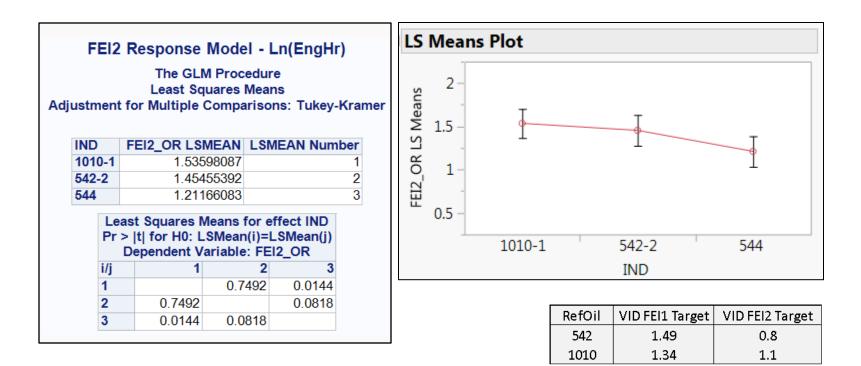
• Analyzing PM Data

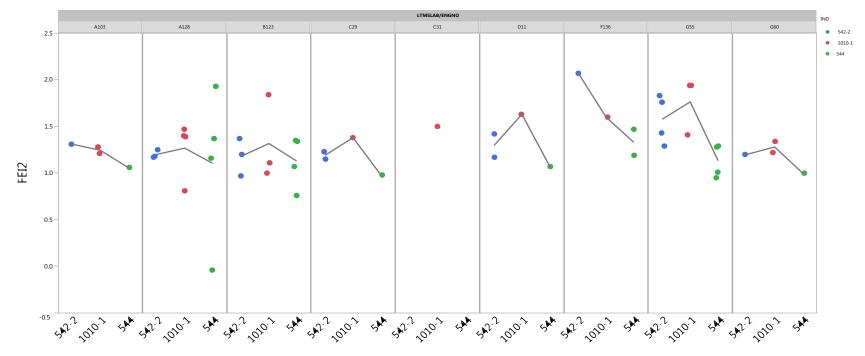

- FEI1 LnEngHr Model
- FEI1 Ice Hockey Stick Model

• FEI2 – LnEngHr Model

- FEI2 Ice Hockey Stick Model
- Comparing VIE Precision and Oil Discrimination with other Tests

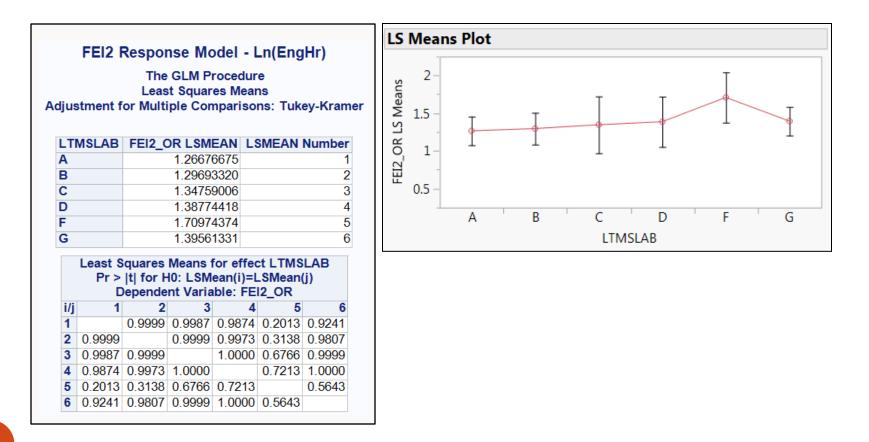
Analyzing PM Data


• Plot of FEI2_OR


- ANOVA Summary of FEI2 data
 - Ln(EngHr) & Reference Oil factors are statistically Significant
 - VIE PM Test Precision: 0.32 (contrast w/VID PM test precision: 0.14)

			(Class	s Lev	el Info	orma	ation		
	Clas	S	Le	evels	Valu	les				
	IND			3	101	0-1 542	2-2 5	544		
	LTM	ISLAE	3	6	ΑB	CDF	G			_
	ENG	NO		9	11 2	29 31 5	5 60	103 123	128 136	5
		N.						Deed		
									53	
		N	umb	per of	Obs	servati	ons	Used (53	
So	ource		DF	Sum	of S	quares	Mea	an Square	F Value	Pr > F
Mo	odel		11		6.29	159104	0	.57196282	5.56	<.0001
	ror		41					.10291048		
Co	prrected	Total	52	1	0.51	092075				
		R-Squ	lare	Coef	f Var	Root I	MSE	FEI2_OR	Mean	
		0.598	3577	23.3	3547	0.320	0797	1.3	374717	
	Source			DF	Type	e III SS	Mea	n Square	F Value	Pr > F
	LnEngH	r		1		988904		03988904		<.0001
_	IND			2	0.97	487524	0.	48743762	4.74	0.0141
I	LTMSLA	В				497246		12299449		
	ENGNO(LTMS	LAB)) 3	0.31	579986	0.	10526662	1.02	0.3924

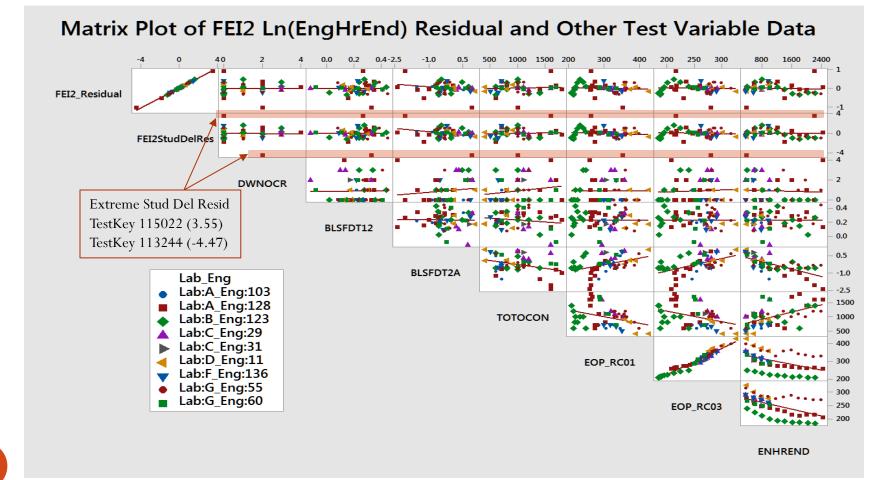
- Difference between reference oil LSmeans for FEI2
 - Significant Oil Contrast: 544 < 1010-1



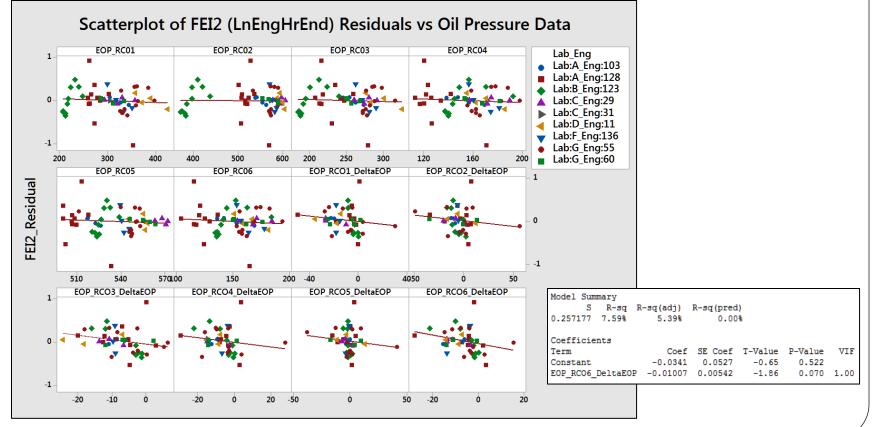
- FEI2Adj Oil Discrimination by Engine
 - Contrast below plot with oil ranking of {544 < 1010-1}
 - Oil discrimination is not consistent across labs; in particular, Lab F, though sample size is small and inferences can be impacted by variation

IND

- Difference between test Lab LSMeans for FEI2
 - No significant difference between labs



- LSMeans difference between engines within the same Lab
 - Contrasts: $\{A-103 \text{ vs.} A-128\}$, $\{C-29 \text{ vs.} C-31\}$, $\{G-55 \text{ vs.} G-60\}$
 - Conclusion: No ¹Significant Difference between engines with Lab
 - Lab G engines significantly differ when additional significant model


terms are added (lab*oil & oil*engine hours interactions)

	LTMSLAB		LSMEAN Number			Le	t for H	es Means f l0: LSMear	n(i)=LSMea	an(j) / Pr >			
103	Α	1.26062811	1			_	D	ependent	Variable: F	-	_	_	
128	Α	1.27290538	2	i/j	1	2	3	4	5	6	-	8	
123	В	1.29693320	3			-0.06227	-0.18274	0.048716	-0.51107 0.9999	0.9997	-1.96551 0.5747	-1.50431 0.8471	1.00
29	С	1.24949353	4	-	0.062274			0.118506		-0.5806	-2.2175		
31	С	1.44568658	5	2	1.0000		1.0000		0.9999	0.9996	0.4140		
11	D	1.38774418	6			0.171165		0.239135		-0.45727	-2.08748		
136	F	1.70974374	7	3	1.0000	1.0000		1.0000	1.0000	0.9999	0.4953	0.6462	1.00
55	G	1.55735707	8		-0.04872	-0.11851	-0.23913		-0.5354	-0.60947	-2.01424	-1.56892	0.0683
60	G	1.23386956	9	4	1.0000	1.0000	1.0000		0.9998	0.9995	0.5428		
•••	•	1.20000000			0.511069					0.158134		-0.31955	
Means Plo	ot			5	0.9999	0.9999	1.0000		0.45040	1.0000			
1								0.609466			-1.40921	-0.86337	
2 –		T	T	6	0.9997	0.9996	0.9999		1.0000	1,409205	0.8878	0.9937	0.99
		- T		7	0.5747	0.4140	0.4953		0.9982	0.8878		0.9970	
1.5 -	II			-	1.504309		1.855866				-0.77598	0.0010	1.6479
1	I l		v	8	0.8471	0.5043	0.6462	0.8155	1.0000	0.9937	0.9970		0.77
1 L		± 1	1		-0.11795	-0.19901	-0.31889	-0.06836	-0.58476	-0.67318	-2.08246	-1.64797	
0.5 -				9	1.0000	1.0000	1.0000	1.0000	0.9996	0.9989	0.4985	0.7730	
[4110	3 '[A]128 '[B]12	23 [C]29 [C]31 [D]11	[F]136 [G]55 [G]60	1	г.,1	•		•.•	1 60	40 1	1 (- 	
[A]10	5 [A]120 [D]12	ENGNO[LTMSLAB]	[1]130 [0]33 [0]00	1	Familyv	vise err	or rate	critica.	l t of 2	.49 sel	ected f	or 3 co	ntras
									Familywis	e Bonfer	onni for		
									Error Rate	e 3 con	trasts	DOF C	critical t
									0.05	0.0	167	41	2.496
									0.10	0.0	333	41	2.202

- Matrix Plot of FEI2 residuals vs. other variables
 - 2 unusual studentized deleted residual results for Engine128 in Lab A

- Plot of FEI2 residuals vs. oil pressure variable data
 - Oil pressure $delta_{(t)} = [Eng Oil Pressure]_{(t)} [Eng Oil Pressure]_{(t-1)}$
 - Possible evidence of relationship between oil pressure delta and FEI2 residuals

FEI2 Precision (LnEngHr Model)

Model: Oil, Lab, Engine(Lab), LnEngHr

Model RMSE

- s = 0.32
- VIE Prove-out s=0.16
- VID Precision Matrix s=0.16
- VID current data s=0.13

Repeatability

- s = 0.32
- r = 0.89

Reproducibility

- s = 0.33
- R = 0.91

FEI2 Precision (LnEngHr Model)

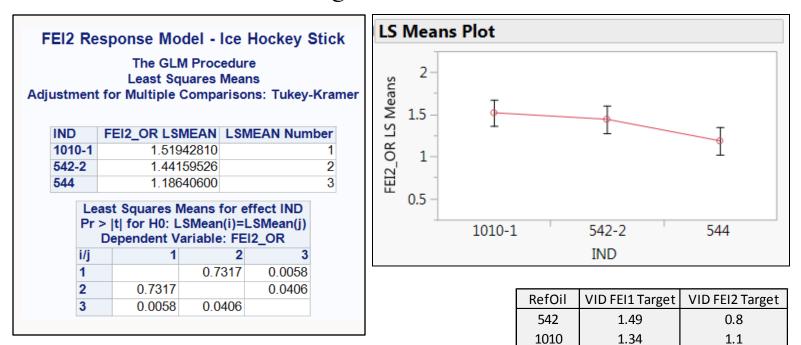
Based upon the Seq. VIE and VID pooled standard deviations (s_r) and ASTM's repeatability (r), there is no significant difference between an FEI2 result^{1,2} of 0.4 – 1.5 for the VIE and 1.0 – 1.5 for the VID.

Note 1: An FEI2 of 1.5 was arbitrarily selected in the calculations as the upper pass/fail limit. Note 2: If the identified statistical outliers (test keys 115022 & 113244) are from a different population and not representative of real VIE repeatability, the above statement may not represent the true precision of the test.

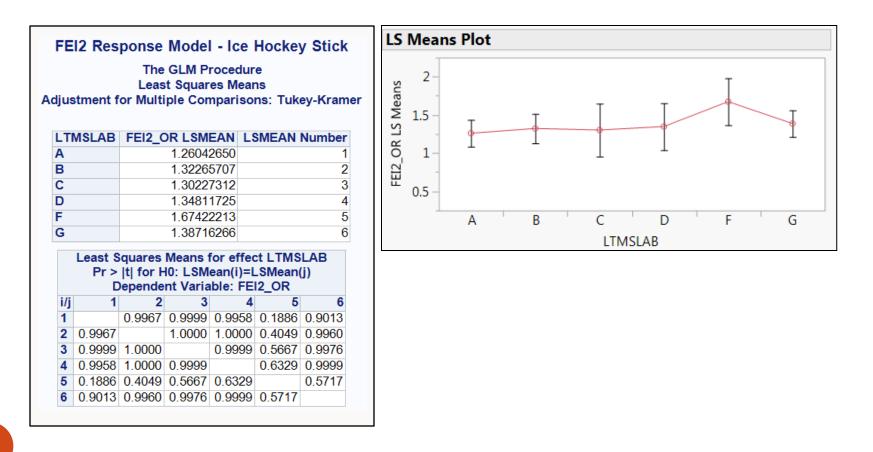
56

Agenda

- Review PM Data for Analysis
- Evaluating Baseline Weighting Scenarios
- Evaluating Alternatives for Engine Hour Adjustment


• Analyzing PM Data

- FEI1 LnEngHr Model
- FEI1 Ice Hockey Stick Model
- FEI2 LnEngHr Model
- FEI2 Ice Hockey Stick Model
- Comparing VIE Precision and Oil Discrimination with other Tests


- ANOVA Summary of FEI2 data
 - FEI2_EnHrEnd & Reference Oil factors are statistically Significant
 - VIE PM Test Precision: 0.29 (contrast w/VID PM test precision: 0.14)

			01-				41		т
					el Info	orma	tion		
Cla	ISS		.evel	s Val	ues				
INC)			3 101	0-1 542	2-2 5	44		
LTI	MSLA	B		6 A B	CDF	G			
EN	GNO			9 11 2	29 31 5	5 60	103 123 1	28 136	
									_
					servati				
		lum	ber	of Ob	servati	ons	Used 53	5	
Source		DF	Sur	n of S	quares	Mea	an Square	F Value	Pr > F
Model		11		6.94	808406	0	63164401	7.27	<.0001
Error		41		3.56	283669	0	08689846		
Corrected	Total	52		10.510	092075				
[P-Sa	iare	Coe	ff Var	Poot I		FEI2_OR	Mean	
	-			44335			_	74717	
	0.001	055	21.	44000	0.29	+/00	1.0	14111	
Source			DF	Туре	III SS	Mea	n Square	F Value	Pr > F
FEI2_Enhr	rEnd		1	3.696	38206	3.	69638206	42.54	<.0001
IND			2	1.038	11130	0.	51905565	5.97	0.0053
LTMSLAB	}		5	0.522	95898	0.	10459180	1.20	0.3246
ENGNO(L	TMSL	AB)	3	0.438	19994	0.	14606665	1.68	0.1860

- Difference between reference oil LSmeans for FEI2
 - Significant Oil Contrast: 544 < 1010-1 and 544 < 542-2
 - Higher VIE FEIs as compared to VID is partially due to correction at reduced number of engine hours

- Difference between test Lab LSMeans for FEI2
 - No significant difference between labs

- LSMeans difference between engines within the same Lab for FEI2
 - Contrasts: {A-103 vs. A-128}, {C-29 vs. C-31}, {G-55 vs. G-60}
 - Conclusion: No ¹Significant Difference between engines with Lab
 - Lab G engines significantly differ when additional significant model terms are added (lab*oil & oil*engine hours interactions)

	LTMSLAB	FEI2_OR LSMEAN	LSMEAN Number	Least Squares Means for Effect ENGNO(LTMSLAB) t for H0: LSMean(i)=LSMean(j) / Pr > t									
103	Α	1.22119310	1		Dependent Variable: FEI2_OR								
128	Α	1.29965990	2	i/j	1	2	3	4	5	6	7	8	-
123	В	1.32265707	3			-0.42936		0.039472	-0.5122	-0.60432			0.143694
29	С	1.21290267	4	1	0.429363	1.0000	0.9997	1.0000 0.474116	0.9999	0.9995	0.4509	0.5654	1.0000 0.595698
31	С	1.39164356	5	2	1.0000		1.0000	0.9999	1.0000	1.0000	0 5173	0.3956	0.9995
11	D	1.34811725	6			0.178289		0.597468	-0.21375	-0.13834	-1.92029		0.716558
136	F	1.67422213	7	3	0.9997	1.0000		0.9995	1.0000	1.0000	0.6043	0.5392	0.9983
55	G	1.58308625	8		-0.03947	-0.47412	-0.59747		-0.53072		-2.19707		0.103146
60	G	1.19123907	9	4	1.0000	0.9999	0.9995		0.9998	0.9991	0.4265	0.5279	
	0	1.10120001			0.512197	0.286233		0.530721		0.129256			0.602035
LS Means Plot				5	0.9999	1.0000	1.0000	0.9998		1.0000	0.9948	0.9996	0.9995
					0.604324	0.26429	0.138344		-0.12926		-1.55309		0.746906
2- Vega 1.5- I.5- I.5- I.5- I.5- I.5- I.5- I.5- I				6	0.9995	1.0000	1.0000	0.9991	1.0000	1,553091	0.8235	0.9285	0.9977
				7	0.4509	0.5173	0.6043	0.4265	0.039332	0.8235		0.9999	2.300204
				'	1.979717	2.248367	2.019726		0.593741		-0.50125	0.9999	2.152069
					0.5654	0.3956	0.5392	0.5279	0.9996	0.9285	0.9999		0.4543
					-0.14369	-0.5957	-0.71656	-0.10315	-0.60204	-0.74691	-2.3002	-2.15207	
H 05					1.0000	0.9995	0.9983	1.0000	0.9995	0.9977	0.3655	0.4543	
[A]1	¹ Familywise error rate critical t of 2.49 selected for 3 contrast												
	ENGNO[LTMSLAB]					Familywise Bonferonni for							
						Error Ra	ate 3 co	ontrasts	DOF	Critical t			
51								0.05	0	.0167	41	2.496	
										0	.0333	41	2.202

FEI2 Precision (IHS Model)

Model: Oil, Lab, Engine(Lab), Min(EngHr, 1800)

Model RMSE

- s = 0.29
- VIE Prove-out s=0.16
- VID Precision Matrix s=0.16
- VID current data s=0.13

Repeatability

- s = 0.29
- r = 0.81

Reproducibility

- s = 0.31
- R = 0.87

FEI2 Precision (IHS Model)

Based upon the Seq. VIE and VID pooled standard deviations (s_r) and ASTM's repeatability (r), there is no significant difference between an FEI1 result^{1,2} of 0.7 – 1.5 for the VIE and 1.0 – 1.5 for the VID.

Note 1: An FEI2 of 1.5 was arbitrarily selected in the calculations as the upper pass/fail limit. Note 2: If the identified statistical outliers (test keys 115022 & 113244) are from a different population and not representative of real VIE repeatability, the above statement may not represent the true precision of the test.

63

Agenda

- Review PM Data for Analysis
- Evaluating Baseline Weighting Scenarios
- Evaluating Alternatives for Engine Hour Adjustment

Analyzing PM Data

- FEI1 LnEngHr Model
- FEI1 Ice Hockey Stick Model
- FEI2 LnEngHr Model
- FEI2 Ice Hockey Stick Model
- Comparing VIE Precision and Oil Discrimination with other Tests

Comparing VIE Precision and Oil Discrimination with other Tests

Sequence	VID FEI1			
Oil		Target (LTMS)	Method Standard Deviation	0.13
540	(GF5A)	1.32		
541	(GF5D)	0.87	Full span of results (st devs)	4.77
542	(GF5X)	1.49	Span of Oil 1010 - Oil 542 (st devs)	1.15
1010		1.34		
Sequence	VID FEI2			
Oil		Target (LTMS)	Method Standard Deviation	0.14
540	(GF5A)	1.04		
541	(GF5D)	0.71	Full span of results (st devs)	2.79
542	(GF5X)	0.8	Span of Oil 1010 - Oil 542 (st devs)	2.14
1010		1.1		
Sequence	VIE FEI1			
Oil		LS Mean (Regression)	Regression RMSE	0.20
1010-1		1.72		
542-2		2.31	Full span of results (st devs)	4.2
544		1.22	Span of Oil 1010 - Oil 542 (st devs)	2.2
Sequence	VIE FEI2			
Oil		LS Mean (Regression)	Regression RMSE	0.32
1010-1		1.54		
542-2		1.45	Full span of results (st devs)	1.03
544		1.21	Span of Oil 1010 - Oil 542 (st devs)	0.28

Models contain lab, engine(lab), oil, ln(ENHREND)

Comments

- A method of measuring test precision and oil discrimination is to divide the (FEI difference of best and worst performing reference oils) by the (test precision)
- The result is the # of standard deviations that separate reference oil performance
- Comparing the standard deviation alone is not necessarily meaningful; what if the standard deviation is larger, but oils span a larger FEI range? This is what appears to be the case for VIE FEI1
- Granted, this approach is influenced by choice of reference oils
- Engine tests typically show reference oil discrimination of about 1-3 standard deviations (see next slide)

Comparing VIE Precision and Oil Discrimination with other Tests

- Sequence IIIG ln(PVIS): oils separated by 2.0 standard deviations
- Sequence IIIG WPD: oils separated by 2.3 standard deviations
- Sequence IVA wear: oils separated by 1.2 standard deviations
- Sequence VID FEI2: oils separated by 2.9 standard deviations

Seq	IIIG

PERCENT VISCOSITY INCREASE Unit of Measure: LN(PVIS)

Reference Oil	Mean	Standard Deviation
434	4.7269	0.3859
435	5.1838	0.3096
435-2	5.1838	0.3096
438	4.5706	0.1768

Seq IIIG

WEIGHTED PISTON DEPOSITS Unit of Measure: Merits

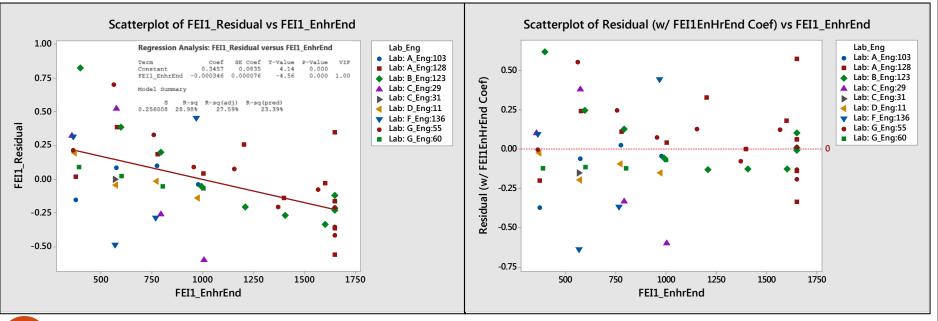
Reference Oil	Mean	Standard Deviation
434	4.80	0.96
435	3.59	0.58
435-2	3.59	0.58
438	3.20	0.33

AVERAGE CAMSHAFT WEAR Unit of Measure: micrometers

Reference Oil	Mean	Standard Deviation
1006-2	102.18	13.54
1007	84.76	15.40

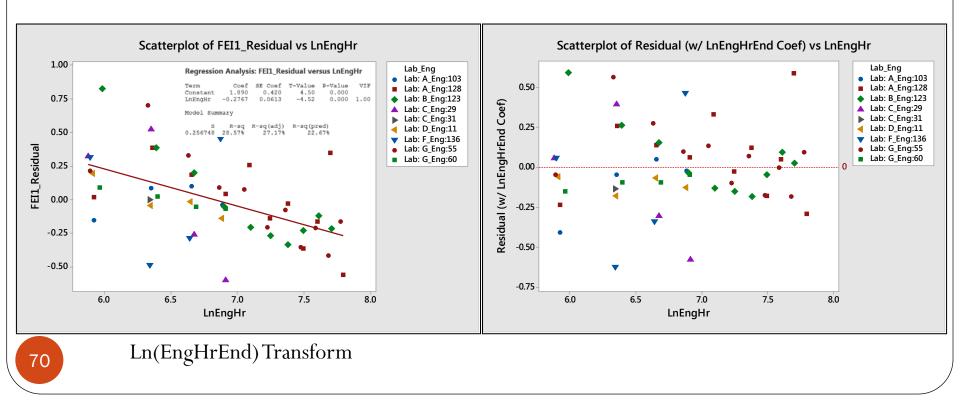
Seq VID FUEL ECONOMY IMPROVEMENT at 100 Hours Unit of Measure: Percent

Reference Oil	Mean	Standard Deviation
540 (GF5A)	1.04	0.14
541 (GF5D)	0.71	0.14
542 (GF5X)	0.80	0.14
1010	1.10	0.18

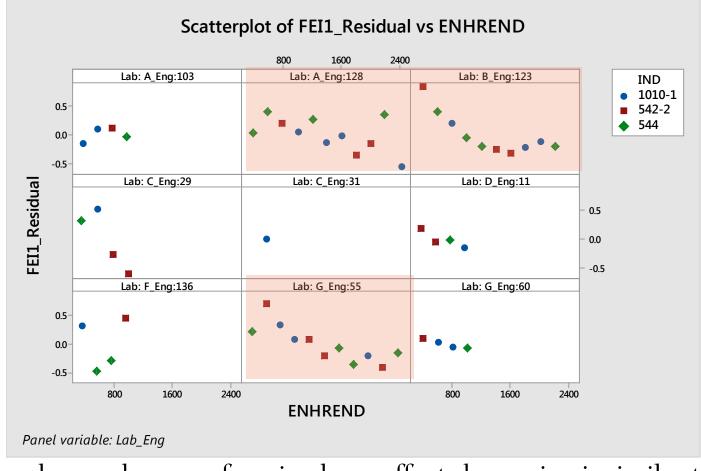

Next Steps

- Choose Engine Hour Adjustment (Ln vs IHS)
- Review BLB-BLA Shift
- Review Operational Data
- Decide on LTMS

Appendix A

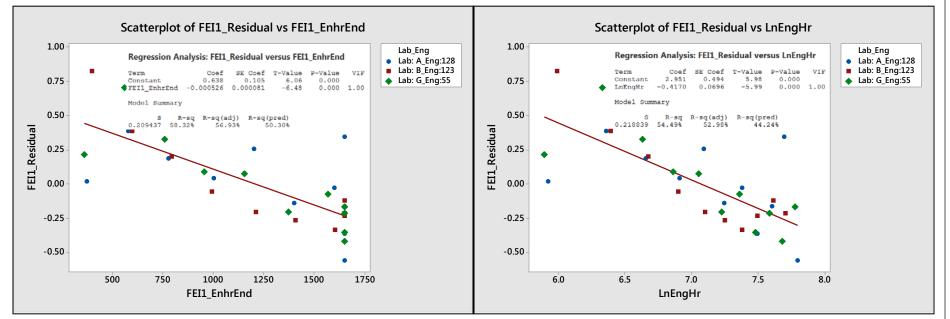

Evaluating FEI1 Eng Hour Adjustment Approach

- Model factors: Lab, Eng(LAB), Oil
- FEI1 model residuals (y) vs. EngHrEnd [Ice Hockey Stick] (x) data are shown below
- Model RMSE and Rsquare are 0.256 and 28.98, respectively



69

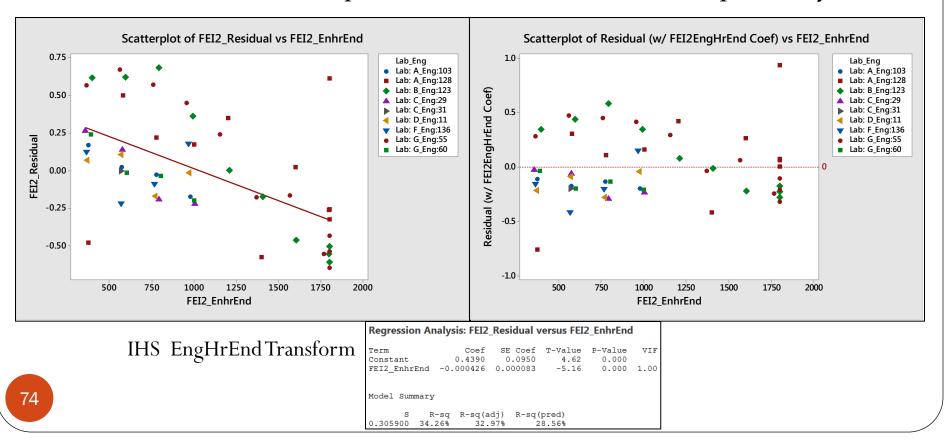
- Model factors: Lab, Eng(Lab), Oil
- Fit of FEI1 model residuals (y) vs. Ln(EngHrEnd) (x) data are shown below
- Model RMSE and Rsquare are 0.257 and 28.57, respectively


• Exploring the same data set for those engines that have a higher engine hour age (with Engines 128, 123, and 55, exclusively)

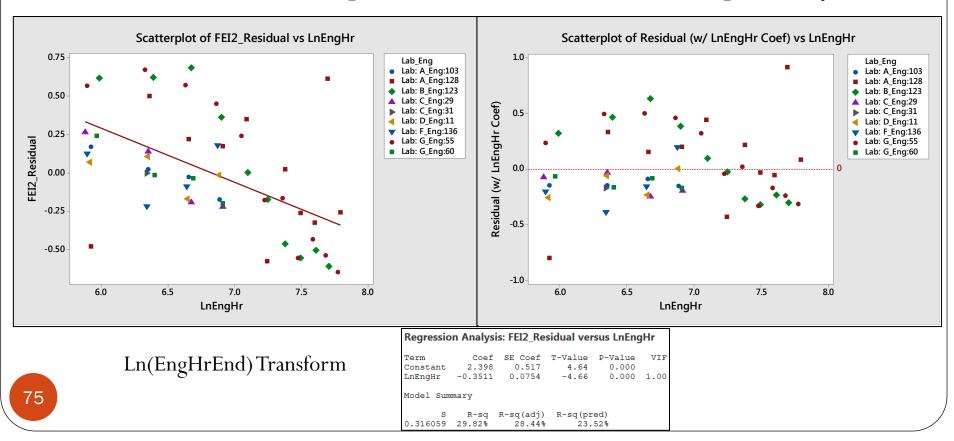
• The observed range of engine hour effects by engine is similar to what is observed in the VID (see Appendix D)

71

• Higher aged engines have similar model fit results when comparing the Ice Hockey Stick and transformed (natural log) engine hours with respect to the FEI1 model fit residuals.



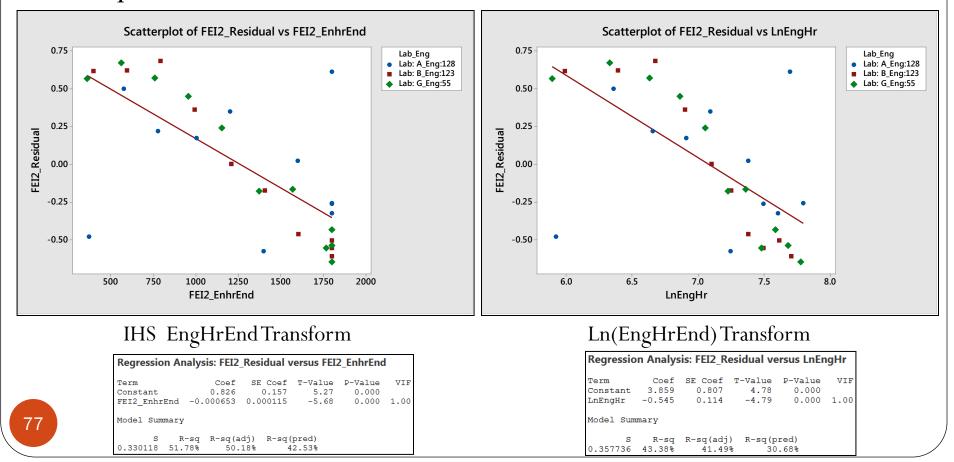
IHS EngHrEndTransform


Ln(EngHrEnd) Transform

Evaluating FEI2 Eng Hour Adjustment

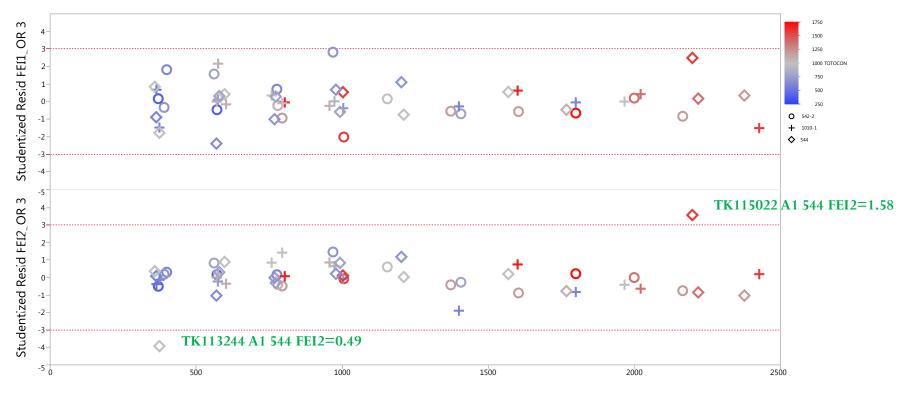
- Linear fit of FEI2 model residuals (*y*) vs. Ice Hockey Stick EngHrEnd (*x*) data are shown below
- Model RMSE and Rsquare are 0.306 and 34.26, respectively

- Fit of FEI2 model residuals (*y*) vs. Ln(EngHrEnd) (*x*) data are shown below
- Model RMSE and Rsquare are 0.316 and 29.82, respectively



• Exploring the same data set for those engines that have a higher engine hour age (with Engines 128, 123, and 55, exclusively)

• The observed range of engine hour effects by engine is similar to what is observed in the VID (see Appendix D)


• Higher aged engines have similar results when comparing the untransformed and transformed (natural log) engine hours with respect to the FEI2 model fit residuals.

Appendix B

Residual Diagnostics for LnEngHrEnd Model

Outliers (included in analysis) Model: Oil, Lab, Engine(Lab), LnEngHr

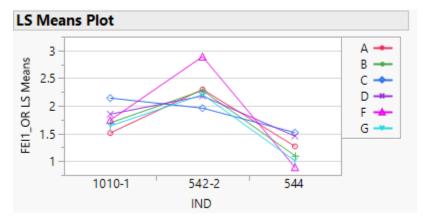
ENHREND

Correlation Model: Oil, Lab, Engine(Lab), LnEngHr

orrelations			
		OR Residual FEI2_OR Re	
esidual FEI1_OR	1.00		0.9221
esidual FEI2_OR	0.75		0.9502
esidual FEISUM	0.92	21 0.9502	1.0000
Scatterplot	Matrix		
			•
0.5 -			a
	esidual EI1_OR		
-0.5 -		*	
-			
0.5 -			· · · · · · · · · · · · · · · · · · ·
0.25 -		Residual	
0-	M	FEI2_OR	
0.25 -			8.
-0.5 -	•		***
0.75 -			•
1-		/	
-			/
0.5 -			Residual
0-		5.	FEISUM
-0.5 -			
		1. je - je	
-1-/ • /			

Appendix C

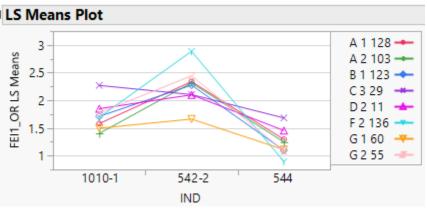
Further Analyses of Reference Oil Ranking with Lab*Oil and Oil*ENHREND Interaction Terms


Summary of Fit					
RSquare RSquare Adj Root Mean Square Error Mean of Response	0.943567 0.89881 0.182488 1.711509				
Observations (or Sum Wgts)	53				
Analysis of Variance					
Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Prob> t	VIE
Intercept	1.7418334	0.036758	47.39	<.0001*	
LTMSLAB[A]	-0.064584	0.056921	-1.13	0.2658	2.9187461
LTMSLAB[B]	-0.066017	0.064862	-1.02	0.3172	3.098683
LTMSLAB[C]	0.1153368	0.107632	1.07	0.2927	6.3009709
LTMSLAB[D]	0.0708869	0.088056	0.81	0.4274	3.8922824
LTMSLAB[F]	0.0845182	0.089667	0.94	0.3537	4.0360155
IND[1010-1]	0.005789	0.048112	0.12	0.9051	2.502299
IND[542-2]	0.5348536	0.044184	12.11	<.0001*	2.0507054
LTMSLAB[A]:ENGNO[103]	-0.029432	0.062884	-0.47	0.6433	1.6713853
LTMSLAB[C]:ENGNO[29]	0.1567662	0.129039	1.21	0.2342	2.4151288
LTMSLAB[G]:ENGNO[55]	0.1473057	0.058225	2.53	0.0171*	1.4329142
In(ENGHRS)(5.85793,7.87702)	-0.410783	0.059671	-6.88	<.0001*	1.8417033
LTMSLAB[A]*IND[1010-1]	-0.187655	0.073783	-2.54	0.0166*	3.4298692
LTMSLAB[A]*IND[542-2]	0.0608241	0.075661	0.80	0.4280	3.2628494
LTMSLAB[B]*IND[1010-1]	-0.002385	0.09287	-0.03	0.9797	4.3979428
LTMSLAB[B]*IND[542-2]	0.0426186	0.084358	0.51	0.6172	3.6286835
LTMSLAB[C]*IND[1010-1]	0.2627448	0.129884	2.02	0.0524	6.5758527
LTMSLAB[C]*IND[542-2]	-0.457588	0.111115	-4.12	0.0003*	4.8127232
LTMSLAB[D]*IND[1010-1]	0.0167116	0.127751	0.13	0.8968	5.8808399
LTMSLAB[D]*IND[542-2]	-0.193228	0.116131	-1.66	0.1069	5.2570321
LTMSLAB[F]*IND[1010-1]	-0.104595	0.139529	-0.75	0.4595	7.5888118
LTMSLAB[F]*IND[542-2]	0.5040111	0.128228	3.93	0.0005*	6.4092682
In(ENGHRS)*IND[1010-1]	0.0024651	0.082584	0.03	0.9764	2.4690009
In(ENGHRS)*IND[542-2]	-0.268137	0.075248	-3.56	0.0013*	1.9902932

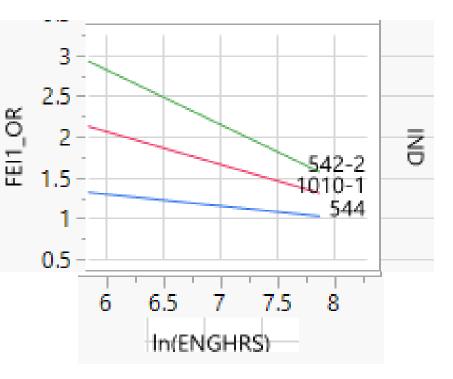
Effect Tests

			Sum of		
Source	Nparm	DF	Squares	F Ratio	Prob > F
LTMSLAB	5	5	0.2560614	1.5378	0.2090
IND	2	2	6.5647797	98.5648	<.0001*
ENGNO[LTMSLAB]	3	3	0.2624177	2.6267	0.0692
In(ENGHRS)(5.85793,7.87702)	1	1	1.5782034	47.3908	<.0001*
LTMSLAB*IND	10	10	1.3710040	4.1169	0.0013*
In(ENGHRS)*IND	2	2	0.5871054	8.8149	0.0010*

• Significant oil differences; oil discrimination is not consistent across labs/engines (In particular, Lab C)


Effect Tests					
Source	Nparm	DF	Sum of Squares	F Ratio	Prob > F
LTMSLAB	5	5	0.2560614	1.5378	0.2090
IND	2	2	6.5647797	98.5648	<.0001*
ENGNO[LTMSLAB]	3	3	0.2624177	2.6267	0.0692
In(ENGHRS)(5.85793,7.87702)	1	1	1.5782034	47.3908	<.0001*
LTMSLAB*IND	10	10	1.3710040	4.1169	0.0013*
In(ENGHRS)*IND	2	2	0.5871054	8.8149	0.0010*

Different Model specified to demonstrate

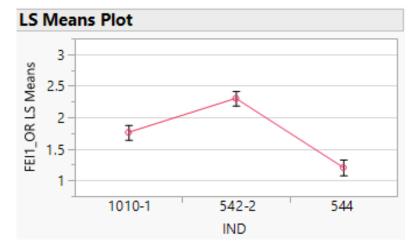

oil differences by engine; had to remove Lab C's first engine as well (52 obs)

Effect Tests								
		Sum of						
Nparm	DF	Squares	F Katio	Prob > F				
1	1	1.5293693	52.5401	<.0001*				
2	2	0.7412295	12.7321	0.0002*				
2	2	5.9485872	102.1793	<.0001*				
7	7	0.6757856	3.3166	0.0123*				
14	14	1.6090433	3.9484	0.0014*				
	2 2 7	1 1 2 2 2 2 7 7	Nparm DF Squares 1 1 1.5293693 2 2 0.7412295 2 2 5.9485872 7 7 0.6757856	Nparm DF Squares F Ratio 1 1.5293693 52.5401 2 2 0.7412295 12.7321 2 2 5.9485872 102.1793 7 7 0.6757856 3.3166				

 Oil discrimination changes over the range of hours; less discrimination at higher hours

Effect Tests								
_			Sum of					
Source	Nparm	DF	Squares	F Ratio	Prob > F			
LTMSLAB	5	5	0.2560614	1.5378	0.2090			
IND	2	2	6.5647797	98.5648	<.0001*			
ENGNO[LTMSLAB]	3	3	0.2624177	2.6267	0.0692			
In(ENGHRS)(5.85793,7.87702)	1	1	1.5782034	47.3908	<.0001*			
LTMSLAB*IND	10	10	1.3710040	4.1169	0.0013*			
In(ENGHRS)*IND	2	2	0.5871054	8.8149	0.0010*			

• Lab G engines differ from one another


Summary of Fit					
RSquare	0.943567				
RSquare Adj	0.89881				
Root Mean Square Error	0.182488				
Mean of Response	1.711509				
Observations (or Sum Wgts)	53				
Analysis of Variance					
Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Prob> t	VIE
Intercept	1.7418334	0.036758	47.39	<.0001*	
LTMSLAB[A]	-0.064584	0.056921	-1.13	0.2658	2.9187461
LTMSLAB[B]	-0.066017	0.064862	-1.02	0.3172	3.09868
LTMSLAB[C]	0.1153368	0.107632	1.07	0.2927	6.3009709
LTMSLAB[D]	0.0708869	0.088056	0.81	0.4274	3.8922824
LTMSLAB[F]	0.0845182	0.089667	0.94	0.3537	4.0360155
IND[1010-1]	0.005789	0.048112	0.12	0.9051	2.50229
IND[542-2]	0.5348536	0.044184	12.11	<.0001*	2.0507054
LTMSLAB[A]:ENGNO[103]	-0.029432	0.062884	-0.47	0.6433	1.671385
LTMSLAB[C]:ENGNO[29]	0.1567662	0.129039	1.21	0.2342	2.415128
LTMSLAB[G]:ENGNO[55]	0.1473057	0.058225	2.53	0.0171*	1.4329142
In(ENGHRS)(5.85793,7.87702) -0.410783	0.059671	-6.88	<.0001*	1.841703
LTMSLAB[A]*IND[1010-1]	-0.187655	0.073783	-2.54	0.0166*	3.4298692
LTMSLAB[A]*IND[542-2]	0.0608241	0.075661	0.80	0.4280	3.2628494
LTMSLAB[B]*IND[1010-1]	-0.002385	0.09287	-0.03	0.9797	4.397942
LTMSLAB[B]*IND[542-2]	0.0426186	0.084358	0.51	0.6172	3.628683
LTMSLAB[C]*IND[1010-1]	0.2627448	0.129884	2.02	0.0524	6.575852
LTMSLAB[C]*IND[542-2]	-0.457588	0.111115	-4.12	0.0003*	4.812723
LTMSLAB[D]*IND[1010-1]	0.0167116	0.127751	0.13	0.8968	5.880839
LTMSLAB[D]*IND[542-2]	-0.193228	0.116131	-1.66	0.1069	5.257032
LTMSLAB[F]*IND[1010-1]	-0.104595	0.139529	-0.75	0.4595	7.588811
LTMSLAB[F]*IND[542-2]	0.5040111	0.128228	3.93	0.0005*	6.409268
In(ENGHRS)*IND[1010-1]	0.0024651	0.082584	0.03	0.9764	2.469000
In(ENGHRS)*IND[542-2]	-0.268137	0.075248	-3.56	0.0013*	1.990293

• Oils Differ (542-2 > 1010-1 > 544)

١	Effect Tests							
	-			Sum of				
	Source	Nparm	DF	Squares	F Ratio	Prob > F		
	LTMSLAB	5	5	0.2560614	1.5378	0.2090		
	IND	2	2	6.5647797	98.5648	<.0001*		
	ENGNO[LTMSLAB]	3	3	0.2624177	2.6267	0.0692		
	In(ENGHRS)(5.85793,7.87702)	1	1	1.5782034	47.3908	<.0001*		
	LTMSLAB*IND	10	10	1.3710040	4.1169	0.0013*		
	In(ENGHRS)*IND	2	2	0.5871054	8.8149	0.0010*		

Least Squares Means Table								
	Least							
Level	Sq Mean	Std Error	Mean					
1010-1	1.7626071	0.05729445	1.68778					
542-2	2.3016023	0.05631592	2.30059					
544	1.2065161	0.06063913	1.17889					
		Least						
Level	Sq	Mean						
542-2	A 2.30	016023						
1010-1	B 1.76	526071						
544	C 1.20	065161						

Levels not connected by same letter are significantly different.

0.603020

Summary	of	Fit	
DCourses			

Noquale	0.093929
RSquare Adj	0.451182
Root Mean Square Error	0.333068
Mean of Response	1.374717
Observations (or Sum Wgts)	53

Analysis of Variance

Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Prob> t	VIF
ntercept	1.3716498	0.067088	20.45	<.0001*	
TMSLAB[A]	-0.128337	0.103889	-1.24	0.2266	2.9187461
LTMSLAB[B]	-0.084756	0.118383	-0.72	0.4797	3.098683
LTMSLAB[C]	-0.03994	0.196444	-0.20	0.8403	6.3009709
LTMSLAB[D]	-0.013171	0.160715	-0.08	0.9352	3.8922824
LTMSLAB[F]	0.309937	0.163655	1.89	0.0683	4.0360155
ND[1010-1]	0.1048375	0.087811	1.19	0.2422	2.502299
ND[542-2]	0.0611305	0.080643	0.76	0.4545	2.0507054
TMSLAB[A]:ENGNO[103]	-0.079198	0.114773	-0.69	0.4957	1.6713853
TMSLAB[C]:ENGNO[29]	-0.06184	0.235516	-0.26	0.7947	2.4151288
TMSLAB[G]:ENGNO[55]	0.2263377	0.10627	2.13	0.0418*	1.4329142
n(ENGHRS)(5.85793,7.87702)	-0.571148	0.108909	-5.24	<.0001*	1.8417033
LTMSLAB[A]*IND[1010-1]	-0.039832	0.134666	-0.30	0.7695	3.4298692
LTMSLAB[A]*IND[542-2]	-0.008276	0.138093	-0.06	0.9526	3.2628494
LTMSLAB[B]*IND[1010-1]	0.0730973	0.169502	0.43	0.6695	4.3979428
LTMSLAB[B]*IND[542-2]	-0.107951	0.153966	-0.70	0.4888	3.6286835
LTMSLAB[C]*IND[1010-1]	-0.055955	0.237057	-0.24	0.8151	6.5758527
LTMSLAB[C]*IND[542-2]	-0.096539	0.202802	-0.48	0.6376	4.8127232
LTMSLAB[D]*IND[1010-1]	0.2260238	0.233164	0.97	0.3404	5.8808399
LTMSLAB[D]*IND[542-2]	-0.212942	0.211957	-1.00	0.3234	5.2570321
LTMSLAB[F]*IND[1010-1]	-0.348484	0.254662	-1.37	0.1817	7.5888118
LTMSLAB[F]*IND[542-2]	0.392685	0.234035	1.68	0.1041	6.4092682
n(ENGHRS)*IND[1010-1]	-0.15929	0.150728	-1.06	0.2993	2.4690009
n(ENGHRS)*IND[542-2]	-0.131988	0.13734	-0.96	0.3445	1.9902932

Effect Tests

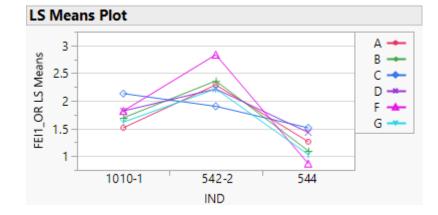
			Sum of		
Source	Nparm	DF	Squares	F Ratio	Prob > F
LTMSLAB	5	5	0.5062845	0.9128	0.4865
IND	2	2	0.4290340	1.9337	0.1628
ENGNO[LTMSLAB]	3	3	0.5271050	1.5838	0.2146
In(ENGHRS)(5.85793,7.87702)	1	1	3.0509481	27.5023	<.0001*
LTMSLAB*IND	10	10	0.6849399	0.6174	0.7865
In(ENGHRS)*IND	2	2	0.4859681	2.1903	0.1300

Evidence of Lab G engine differences

Marginal lab difference

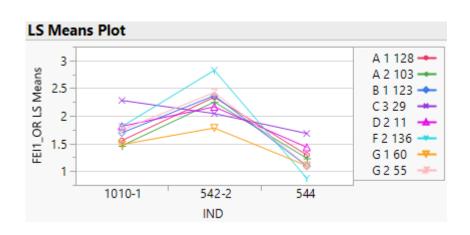
With 2 odd looking tests removed:

- 1. Lab G engines still differ
- 2. Oil 544 < 1010-1 & 542-2
- Hours*oil becomes even less significant


					-
Summary of Fit					
RSquare	0.948009				
RSquare Adj	0.906774				
Root Mean Square Error	0.175159				
Mean of Response	1.711509				
Observations (or Sum Wgts)	53				
Parameter Estimates					
Term		Estimate	Std Error	t Ratio	Prob> t
Intercept		2.2605937	0.067759	33.36	<.0001*
LTMSLAB[A]		-0.067207	0.054439	-1.23	0.2269
LTMSLAB[B]		-0.038803	0.062626	-0.62	0.5404
LTMSLAB[C]		0.0925637	0.10282	0.90	0.3754
LTMSLAB[D]		0.0651897	0.083962	0.78	0.4438
LTMSLAB[F]		0.0834185	0.084607	0.99	0.3323
IND[1010-1]		0.0090584	0.045434	0.20	0.8434
IND[542-2]		0.5471812	0.041922	13.05	<.0001*
LTMSLAB[A]:ENGNO[103]		-0.032497	0.059464	-0.55	0.5889
LTMSLAB[C]:ENGNO[29]		0.1561887			0.2173
LTMSLAB[G]:ENGNO[55]		0.1400792	0.055548		0.0174*
LTMSLAB[A]*IND[1010-1]		-0.182901	0.070798	-2.58	0.0151*
LTMSLAB[A]*IND[542-2]		0.052721	0.072328		0.4719
LTMSLAB[B]*IND[1010-1]		-0.032961	0.088766	-0.37	0.7131
LTMSLAB[B]*IND[542-2]		0.0969565	0.081495	1.19	0.2438
LTMSLAB[C]*IND[1010-1]		0.2740095			0.0358*
LTMSLAB[C]*IND[542-2]		-0.494086			
LTMSLAB[D]*IND[1010-1]		-0.013185			
LTMSLAB[D]*IND[542-2]		-0.1515		-1.38	0.1784
LTMSLAB[F]*IND[1010-1]		-0.030984		-0.24	
LTMSLAB[F]*IND[542-2]		0.4472894			
EnginesHRS IHS		-0.000505			
(EnginesHRS IHS-999.509)*IN					0.7576
(EnginesHRS IHS-999.509)*IN	ID[542-2]	-0.000314	8.634e-5	-3.63	0.0011*

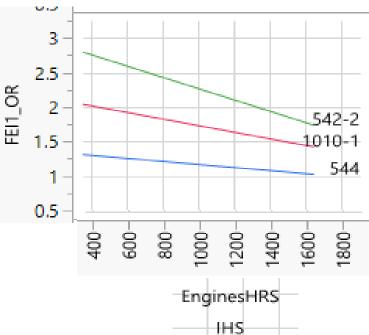
Effect Tests

			Sum of		
Source	Nparm	DF	Squares	F Ratio	Prob > F
LTMSLAB	5	5	0.2298268	1.4982	0.2210
IND	2	2	7.0439007	114.7932	<.0001*
ENGNO[LTMSLAB]	3	3	0.2448488	2.6602	0.0668
LTMSLAB*IND	10	10	1.3659171	4.4520	0.0008*
EnginesHRS IHS	1	1	1.6223632	52.8787	<.0001*
EnginesHRS IHS*IND	2	2	0.4982961	8.1206	0.0016*


• Significant oil differences; Oil discrimination not consistent across labs/engines (In particular, Lab C)

Effect Tests					
			Sum of		
Source	Nparm	DF	Squares	F Ratio	Prob > F
LTMSLAB	5	5	0.2298268	1.4982	0.2210
IND	2	2	7.0439007	114.7932	<.0001*
ENGNO[LTMSLAB]	3	3	0.2448488	2.6602	0.0668
LTMSLAB*IND	10	10	1.3659171	4.4520	0.0008*
EnginesHRS IHS	1	1	1.6223632	52.8787	<.0001*
EnginesHRS IHS*IND	2	2	0.4982961	8.1206	0.0016*

Different Model specified to demonstrate oil differences by engine; had to remove Lab C's first engine as well (52 obs)


Effect Tests					
			Sum of		
Source	Nparm	DF	Squares	F Ratio	Prob > F
IND	2	2	6.4729179	108.3520	<.0001*
EnginesHRS IHS	1	1	1.5151329	50.7245	<.0001*
EnginesHRS IHS*IND	2	2	0.5893853	9.8659	0.0007*
LabStandEngine	7	- 7	0.5958892	2.8499	0.0249*
LabStandEngine*IND	14	- 14	1.5089141	3.6083	0.0025*

89

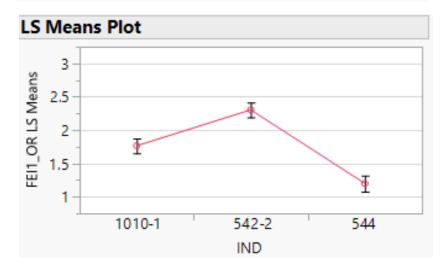
• Oil discrimination changes over the range of hours; less discrimination at higher hours

Effect Tests					
			Sum of		
Source	Nparm	DF	Squares	F Ratio	Prob > F
LTMSLAB	5	5	0.2298268	1.4982	0.2210
IND	2	2	7.0439007	114.7932	<.0001*
ENGNO[LTMSLAB]	3	3	0.2448488	2.6602	0.0668
LTMSLAB*IND	10	10	1.3659171	4.4520	0.0008*
EnginesHRS IHS	1	1	1.6223632	52.8787	<.0001*
EnginesHRS IHS*IND	2	2	0.4982961	8.1206	0.0016*

• Lab G engines differ from one another

Parameter Estimates				
Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	2.2605937	0.067759	33.36	<.0001*
LTMSLAB[A]	-0.067207	0.054439	-1.23	0.2269
LTMSLAB[B]	-0.038803	0.062626	-0.62	0.5404
LTMSLAB[C]	0.0925637	0.10282	0.90	0.3754
LTMSLAB[D]	0.0651897	0.083962	0.78	0.4438
LTMSLAB[F]	0.0834185	0.084607	0.99	0.3323
IND[1010-1]	0.0090584	0.045434	0.20	0.8434
IND[542-2]	0.5471812	0.041922	13.05	<.0001*
LTMSLAB[A]:ENGNO[103]	-0.032497	0.059464	-0.55	0.5889
LTMSLAB[C]:ENGNO[29]	0.1561887	0.123857	1.26	0.2173
LTMSLAB[G]:ENGNO[55]	0.1400792	0.055548	2.52	0.0174*
LTMSLAB[A]*IND[1010-1]	-0.182901	0.070798	-2.58	0.0151*
LTMSLAB[A]*IND[542-2]	0.052721	0.072328	0.73	0.4719
LTMSLAB[B]*IND[1010-1]	-0.032961	0.088766	-0.37	0.7131
LTMSLAB[B]*IND[542-2]	0.0969565	0.081495	1.19	0.2438
LTMSLAB[C]*IND[1010-1]	0.2740095	0.124431	2.20	0.0358*
LTMSLAB[C]*IND[542-2]	-0.494086	0.106186	-4.65	<.0001*
LTMSLAB[D]*IND[1010-1]	-0.013185	0.121771	-0.11	0.9145
LTMSLAB[D]*IND[542-2]	-0.1515	0.109864	-1.38	0.1784
LTMSLAB[F]*IND[1010-1]	-0.030984	0.128644	-0.24	0.8114
LTMSLAB[F]*IND[542-2]	0.4472894	0.12149	3.68	0.0009*
EnginesHRS IHS	-0.000505	6.938e-5	-7.27	<.0001*
(EnginesHRS IHS-999.509)*IND[1010-1]	2.9025e-5	9.317e-5	0.31	0.7576
(EnginesHRS IHS-999.509)*IND[542-2]	-0.000314	8.634e-5	-3.63	0.0011*

• Oils Differ (542-2 > 1010-1 > 544)


Effect Tests

			Sum of		
Source	Nparm	DF	Squares	F Ratio	Prob > F
LTMSLAB	5	5	0.2298268	1.4982	0.2210
IND	2	2	7.0439007	114.7932	<.0001*
ENGNO[LTMSLAB]	3	- 3	0.2448488	2.6602	0.0668
LTMSLAB*IND	10	10	1.3659171	4.4520	0.0008*
EnginesHRS IHS	1	1	1.6223632	52.8787	<.0001*
EnginesHRS IHS*IND	2	2	0.4982961	8.1206	0.0016*

Least Squares Means Table				
	Least			
Level	Sq Mean	Std Error	Mean	
1010-1	1.7653905	0.05473655	1.68778	
542-2	2.3035133	0.05398531	2.30059	
544	1.2000926	0.05860502	1.17889	

		Least
Level		Sq Mean
542-2 A		2.3035133
1010-1 B		1.7653905
544	С	1.2000926

Levels not connected by same letter are significantly different.

	Summary of Fit					
	RSquare	0.723496				
	RSquare Adj	0.504199				
	Root Mean Square Error	0.316572				
	Mean of Response	1.374717				
	Observations (or Sum Wgts)	53				
	Parameter Estimates					
	Term		Estimate	Std Error	t Ratio	Prob> t
	Intercept		2.1106389	0.122463	17.23	<.0001*
	LTMSLAB[A]		-0.127923	0.098389	-1.30	0.2038
	LTMSLAB[B]		-0.046219	0.113186	-0.41	0.6860
	LTMSLAB[C]		-0.067121	0.185831	-0.36	0.7206
	LTMSLAB[D]		-0.030285	0.151748	-0.20	0.8432
	LTMSLAB[F]		0.3138286	0.152914	2.05	0.0493*
	IND[1010-1]		0.1126975	0.082114	1.37	0.1804
	IND[542-2]		0.0707297	0.075767	0.93	0.3583
	LTMSLAB[A]:ENGNO[103]		-0.091552	0.107471	-0.85	0.4013
_	LTMSLAB[C]:ENGNO[29]		-0.062718	0.223851	-0.28	0.7813
	LTMSLAB[G]:ENGNO[55]		0.2296207	0.100394	2.29	0.0297*
	LTMSLAB[A]*IND[1010-1]		-0.024612	0.127957	-0.19	0.8488
	LTMSLAB[A]*IND[542-2]		-0.020805		-0.16	0.8746
	LTMSLAB[B]*IND[1010-1]		0.0591246	0.16043	0.37	0.7151
	LTMSLAB[B]*IND[542-2]		-0.058976	0.147289	-0.40	0.6918
	LTMSLAB[C]*IND[1010-1]		-0.06807	0.224888	-0.30	0.7643
	LTMSLAB[C]*IND[542-2]		-0.129029	0.191915	-0.67	0.5067
	LTMSLAB[D]*IND[1010-1]		0.1856742	0.220081	0.84	0.4058
	LTMSLAB[D]*IND[542-2]		-0.160012	0.198561	-0.81	0.4269
	LTMSLAB[F]*IND[1010-1]		-0.254339	0.232502	-1.09	0.2830
	LTMSLAB[F]*IND[542-2]		0.3308132	0.219574	1.51	0.1427
	EnginesHRS IHS		-0.000723	0.000125	-5.77	<.0001*
	(EnginesHRS IHS-999.509)*			0.000168	-1.13	0.2696
	(EnginesHRSIHS-999.509)*	'IND[542-2]	-0.000131	0.000156	-0.84	0.4085
	Effect Tests					

Effect Tests

			Sum of			
Source	Nparm	DF	Squares	F Ratio	Prob > F	
LTMSLAB	5	5	0.5187336	1.0352	0.4158	
IND	2	2	0.5356598	2.6725	0.0861	
ENGNO[LTMSLAB]	3	3	0.5604304	1.8640	0.1578	
LTMSLAB*IND	10	10	0.4695112	0.4685	0.8967	
EnginesHRS IHS	1	1	3.3344306	33.2718	<.0001*	
EnginesHRS IHS*IND	2	2	0.3905317	1.9484	0.1607	

Evidence of Lab G engine differences

Marginal lab difference

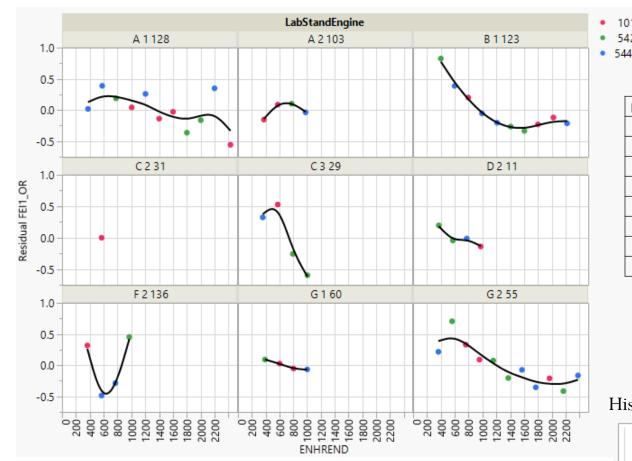
With 2 odd looking tests removed:

- 1. Lab G engines still differ
- 2. Oil 544 < 1010-1 & 542-2

Appendix D

Engine Hours Effect by Engine VID vs. VIE comparison

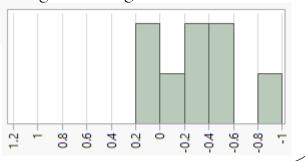
Data Considered


- 53 VIE valid matrix tests
- 572 VID test results
 - LTMS file; test results through 5-6-16
 - Validity codes AC, AO, OC, OO
 - These data include 118 unique engines

Number of Results	Number of Engines
1	2
2	1
3	18
4	37 🔸
5	32
6	14
7	8
8	1
9	1
11	1
12	2
14	1

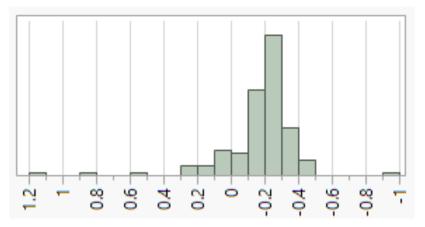
For example, there are 37 engines each with 4 reference test results

VIE FEI1 residuals vs. hours


• Residuals are from modeling FEI1_OR vs. oil, lab, engine(lab)

LabStandEngine	In(ENGHOURS) Estimate
A 1 128	-0.23823
A 2 103	0.14865
B 1 123	-0.59689
C 3 29	-0.95117
D 2 11	-0.31168
F 2 136	0.02443
G 1 60	-0.17904
G 2 55	-0.45233

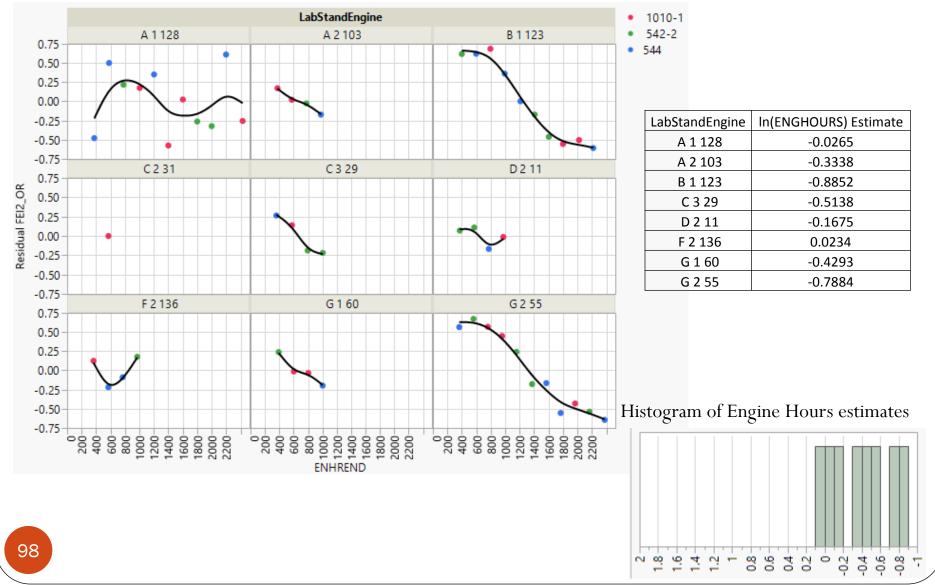
1010-1 542-2


Histogram of Engine Hours estimates

VID FEI1 residuals vs. hours

• Residuals are from modeling FEI1_OR vs. oil, lab, engine(lab)

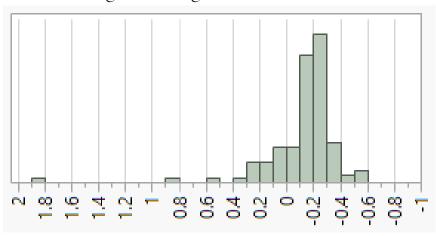
Histogram of Engine Hours estimates



There are 116 estimates; one for each engine. Engines with 1 reference result don't have an engine hours estimate. Most VID estimates range from 0.2976 to -0.4854; VIE estimate range from (0.1487 to -0.9512)

Range of estimates are similar between VID and VIE

VIE FEI2 residuals vs. hours


• Residuals are from modeling FEI2_OR vs. oil, lab, engine(lab)

VID FEI2 residuals vs. hours

• Residuals are from modeling FEI2_OR vs. oil, lab, engine(lab)

Histogram of Engine Hours estimates

There are 116 estimates; one for each engine. Engines with 1 reference result don't have an engine hours estimate. Most VID estimates range from 0.3155 to -0.5829; VIE estimate range from (0.0234 to -0.8852)

Range of estimates are similar between VID and VIE