19. T-8 / T-8E LTMS Requirements

The following are the specific T-8 and T-8E calibration test requirements.

A. <u>Reference Oils and Parameters</u>

The critical parameters are Viscosity Increase at 3.8% Soot (T-8 and T-8E) and Relative Viscosity at 4.8% Soot, 50% DIN Shear Loss (T-8E only). Relative Viscosity at 4.8% Soot, 100% DIN Shear Loss is a non-critical parameter (T-8E only). The reference oils required for test stand and test laboratory calibration are reference oils accepted by the ASTM Mack Test Surveillance Panel. The mean and standard deviation for the current reference oils for each critical and non-critical parameter are presented below.

VISCOSITY INCREASE @ 3.8% SOOT Unit of Measure: cSt CRITICAL PARAMETER

Reference Oil	Mean	Standard Deviation				
1005-3	5.01	0.56				
1005-4	5.01	0.56				

RELATIVE VISCOSITY @ 4.8% SOOT 50% DIN Shear Loss Unit of Measure: unitless CRITICAL PARAMETER

Reference Oil	Mean	Standard Deviation
1005-3	1.76	0.08
1005-4	1.76	0.08

RELATIVE VISCOSITY @ 4.8% SOOT 100% DIN Shear Loss Unit of Measure: unitless NON-CRITICAL PARAMETER

Reference Oil	Mean	Standard Deviation
1005-3	2.00	0.09
1005-4	2.00	0.09

B. Acceptance Criteria

1. New Test Stand

a. Less than four (4) Operationally Valid Calibration Results in Laboratory

• A minimum of two (2) operationally valid calibration tests with no stand Shewhart severity alarms, must be conducted on any approved reference oil.

21. T-11 LTMS Requirements

The following are the specific T-11 calibration test requirements.

A. <u>Reference Oils and Parameters</u>

The critical parameter is Soot at 12.0 cSt Viscosity Increase. Soot at 4.0 cSt Viscosity Increase, Soot at 15.0 cSt Viscosity Increase, and MRV Viscosity are noncritical parameters. The reference oils required for test stand and test laboratory calibration are reference oils accepted by the ASTM Mack Test Surveillance Panel. The mean and standard deviation for the current reference oils for critical and noncritical parameters are presented below.

SOOT @ 4.0 cSt VISCOSITY INCREASE Unit of Measure: % NONCRITICAL PARAMETER

Reference Oil	Mean	Standard Deviation	
822-1	4.09	0.20	

SOOT @ 12.0 cSt VISCOSITY INCREASE Unit of Measure: % CRITICAL PARAMETER

Reference Oil	Mean	Standard Deviation	
822-1	5.81	0.50	

SOOT @ 15.0 cSt VISCOSITY INCREASE Unit of Measure: % NONCRITICAL PARAMETER

Reference Oil	Mean	Standard Deviation	
822-1	6.48	0.61	

MRV VISCOSITY Unit of Measure: cP NONCRITICAL PARAMETER

Reference Oil	Mean	Standard Deviation	
822-1	13948	584	

- Exceed Shewhart test stand chart limit for precision (critical parameter only)
 - Immediately provide written notice of the alarm and its meaning to all Test Purchasers and the TMC. This notice shall be appended to all test reports for the stand in question during the alarm period.
 - Exceed EWMA laboratory chart action limit for severity (all parameters)
 - Calculate laboratory Severity Adjustment (SA) using the current laboratory EWMA (Z_i) as follows:

Soot at 4.0 cSt Viscosity Increase:	$SA = (-Z_i) \times (0.20)$
Soot at 12.0 cSt Viscosity Increase:	$SA = (-Z_i) \times (0.50)$
Soot at 15.0 cSt Viscosity Increase:	$SA = (-Z_i) \times (0.61)$
MRV Viscosity:	$SA = (-Z_i) \times (584)$

- Confirm calculation with the TMC.
- Exceed EWMA test stand chart limit for severity (critical parameter only)
 - Notify the TMC. If the direction of the test stand severity is deemed different from that of the test laboratory, conduct an additional calibration test in the identified test stand. If this limit is still exceeded after the additional calibration test, then remove test stand from the system, notify the TMC, correct test stand severity problem, and follow requirements for entry of a new test stand into the system.
- Exceed Shewhart test stand chart limit for severity (critical parameter only)
 - Conduct an additional calibration test.

The following industry issues are handled by the TMC and do not require individual laboratory action.

- Exceed EWMA industry chart action limit
 - TMC to notify test developer, surveillance panel chairman, and ACC Monitoring Agency. Meeting of TMC, test developer, and surveillance panel required to determine course of action.
- Exceed EWMA industry chart warning limit
 - TMC to notify test developer, surveillance panel chairman, and ACC Monitoring Agency. Coordination of TMC, test developer, and surveillance panel chairman required to discuss potential problem.

24. Engine Oil Aeration Test LTMS Requirements

The following are the specific Engine Oil Aeration Test calibration requirements.

A. Reference Oils and Critical Parameter

The critical parameter is Average Engine Oil Aeration. The reference oils required for test stand and test laboratory calibration are reference oils accepted by the Engine Oil Aeration Test Surveillance Panel. The means and standard deviations for the current reference oils for the critical parameter are presented below.

AVERAGE ENGINE OIL AERATION Unit of Measure: %

Reference Oil	Mean	Standard Deviation
1005-3	7.80	0.25
1005-4	7.80	0.25

B. <u>Acceptance Criteria</u>

- 1. New Test Stand
 - A minimum of two (2) operationally valid calibration tests with no stand Shewhart severity or precision alarms must be conducted on any approved reference oil.
 - All operationally valid calibration test results must be charted to determine if the test stand is currently "in control" as defined by the control charts from the Lubricant Test Monitoring System.
- 2. Existing Test Stand
 - The test stand must have previously been accepted into the system by meeting LTMS calibration requirements.
 - All operationally valid calibration test results on reference oils 1004 and 1005, or subsequent approved reblends, must be charted to determine if the test stand is currently "in control" as defined by the control charts from the Lubricant Test Monitoring System.
- 3. Reference Oil Assignment

Once test stands have been accepted into the system, the TMC will assign reference oils for continuing calibration according to the following reference oil mix:

• 100% of the scheduled calibration tests should be conducted on reference oils 1004 and 1005 or subsequent approved reblends.

4. Control Charts

In Section 1, the construction of the control charts that constitute the Lubricant Test Monitoring System is outlined. The constants used for the construction of the control charts for the Engine Oil Aeration Test, and the response necessary in the case of control chart limit alarms, are depicted below.

			EWMA	Shewhart Chart			
		LAMBDA		К		K	
Chart Level	Limit Type	Precision Severity		Precision	Severity	Precision	Severity
Stand	Warning	0.30	0.30	1.65			
	Action	0.30	0.30	2.33	0.00	1.46	1.75
Industry	Warning	0.15	0.15	1.98	2.35		
	Action	0.15	0.15	2.80	3.10		

LUBRICANT TEST MONITORING SYSTEM CONSTANTS

The following are the steps that must be taken in the case of exceeding control chart limits. The steps are listed in order of priority, although charts should be studied simultaneously to determine the cause(s) of a problem. In the case of multiple alarms, contact the TMC for guidance.

- Exceed EWMA test stand chart action limit for precision
 - Remove test stand from the system. Notify the TMC. Correct test stand precision problem. Follow requirements for entry of a new test stand into the system.
- Exceed EWMA test stand chart warning limit for precision
 - Immediately begin two consecutive calibration tests on the stand which exceeded the warning limit. Notify the TMC.
- Exceed Shewhart test stand chart action limit for precision
 - Conduct an additional calibration test.
- Exceed EWMA stand chart action limit for severity
 - Calculate stand Severity Adjustment (SA) for Average Engine Oil Aeration, using the current stand EWMA (Z_i) as follows:

Average Engine Oil Aeration: $SA = (-Z_i) \times (0.25)$

- Confirm calculation with the TMC.

T-8 Reference Oil Targets						
		Effectiv	ve Dates	Viscosity Increase @ 3.8% Soot		
Oil	n	From ¹	To ²	x	s	
1004-1	30	4-1-94	***	5.13	1.19	
1004-2	10	7-1-95	10-31-95	4.49	1.19 ³	
	20	11-1-95	1-31-96	4.46	1.19^{3}	
	30	2-1-96	9-30-96	4.46	1.19^{3}	
	59	10-1-96	***	4.92	0.93	
1004-3		11-15-97	4-30-98	4.92^{4}	0.93^{4}	
	10	5-1-98	9-13-98	4.71	0.97	
	22	9-14-98	1-31-99	4.57	0.95	
	30	2-1-99	***	4.57	0.90	
1005-2	5	5-24-07	1-24-08	5.85 ⁵	0.72^{5}	
	3	1-25-08	2-6-08	4.83	0.72^{5}	
	5	2-7-08	***	5.11	0.66	
1005-3 ⁶		08-12-10	9-16-11	5.11	0.66	
		9-17-11	***	5.017	0.567	
1005-47		09-21-12	***	5.017	0.567	

Effective for all tests completed on or after this date.
 *** = currently in effect.

3 Standard deviation based on 1004-1.

4 Targets based on 1004-2.

5 Targets based on previous tests on 1005.

6 Targets based on 1005-2.7 Targets based on all blends of 1005.

T-8E Reference Oil Targets							
		Effective DatesRelative Viscosity @ 4.8% Soot			Relative Viscos	Relative Viscosity @ 4.8% Soot	
				50% DIN	Shear Loss	100% DIN	Shear Loss
Oil	n	From ¹	To ²	$\overline{\mathbf{X}}$	S	$\overline{\mathbf{X}}$	S
1004-2	24	1-27-97	***	2.02	0.26		
1004-3		11-15-97	4-30-98	2.02^{3}	0.26^{3}		
	10	5-1-98	9-13-98	2.10	0.29		
	21	9-14-98	1-31-99	2.09	0.27		
	30	2-1-99	***	2.07	0.26		
	59	2-1-98	***			2.21	0.27
1005-2	5	5-24-07	1-24-08	2.09^{4}	0.154	2.42^{4}	0.16^{4}
	3	1-25-08	2-6-08	1.74	0.154	1.98	0.16^{4}
	5	2-7-08	***	1.78	0.11	2.03	0.12
1005-3 ⁵		08-12-10	9-16-11	1.78	0.11	2.03	0.12
		9-17-11	***	1.766	0.08^{6}	2.00^{6}	0.09^{6}
1005-4 ⁶		09-21-12	***	1.76^{6}	0.08^{6}	2.00^{6}	0.096

1 Effective for all tests completed on or after this date.

2 *** = currently in effect.

3 Targets based on 1004-2.

4 Targets based on previous tests on 1005.

5 Targets based on 1005-2

6 Targets based on all blends of 1005.

T-11 Reference Oil Targets											
		Effectiv	ve Dates	Soot @ 4.0 cSt Vis. Inc		Soot @ 12.0 cSt Vis. Inc		Soot @ 15.0 cSt Vis. Inc.		MRV Viscosity	
Oil	n	From	To ¹	$\overline{\mathbf{X}}$	S	$\overline{\mathbf{X}}$	S	$\overline{\mathbf{X}}$	S	$\overline{\mathbf{X}}$	S
820-2	32	3-8-03	***			5.78	0.21			14969	1097
820-2	16	5-28-05	5-31-10	3.81	0.23	5.78 ²	0.21^{2}	6.36	0.26	14969 ²	1097 ²
	³	6-1-10	***	3.95	0.30	5.92	0.22	6.51	0.20	14981	916
820-3	11	9-7-07	***	3.95	0.30	5.92	0.22	6.51	0.20	14981	916
822-1	4	2-1-2013	7-2-2013	3.99	0.21	5.65	0.54	6.35	0.66	14408	314
	8	7-3-2013	***	4.09	0.20	5.81	0.50	6.48	0.61	13948	584

*** = currently in effect
 Value based on earlier data set (n=32)
 Targets based on oil 820-3

07-2013

Engine Oil Aeration Test Reference Oil Targets							
		Effective Dates		Average Engine Oil Aeration			
Oil	n	From ¹	To ²	$\overline{\mathbf{X}}$	S		
1004-2	13	6-2-95	***	9.46	0.25		
1004-3		10-25-97	***	9.46 ³	0.25^{4}		
1005	2	5-10-97	***	7.80	0.25^{4}		
1005-1		8-12-98	***	7.80^{5}	0.25^{4}		
$1005-2^{6}$		09-30-05	***	7.80^{5}	0.25^{4}		
1005-3 ⁶		01-01-11	***	7.80^{5}	0.25^{4}		
$1005-4^{6}$		01-01-13	***	7.80^{5}	0.25^{4}		

Effective for all tests completed on or after this date.
 *** = currently in effect.

3 Mean based on 1004-2.

4 Standard deviation based on 1004-2.

5 Mean based on 1005.

6 Targets based on 1005-1

07-2013

APPENDIX B (continued) HISTORY OF INDUSTRY CORRECTION FACTORS APPLICABLE TO LTMS DATA

$ T-11 \qquad \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Test Area	Effective			Description		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		September 14, 2005			Add -0.39% to Soot @ 12cSt Vis. Inc., Add 1274 cP to		
T-11December 6, 2005Add -0.36% to Soot @ 12cSt Vis. Inc., Add 713 cP to MRV Vis.March 24, 2006Add -0.35% to Soot @ 12cSt Vis. Inc., Add 956 cP to MRV Vis.Batch R Piston Ring & Cylinder Liner HardwareMultiply Average Cylinder Liner Wear by 0.58SWTN Hardware Completed On or Before May 18, 2011Multiply Average Top Ring Weight Loss by 0.95Multiply Average Cylinder Liner Wear by 0.86ALead (250-300) Final = exp[(ln(Δ Lead x 0.95)]OC = exp[(ln($OC_{100-300}$ x 0.96)]Multiply Average Top Ring Weight Loss by 0.92		-			MRV Vis.		
$\frac{MRV Vis.}{March 24, 2006}$ $\frac{MRV Vis.}{Add -0.35\% to Soot @ 12cSt Vis. Inc., Add 956 cP to MRV Vis.}{MRV Vis.}$ $\frac{Batch R Piston Ring \& Cylinder Liner Hardware}{Hardware}$ $\frac{Multiply Average Cylinder Liner Wear by 0.58}{Multiply Average Top Ring Weight Loss by 0.95}$ $\frac{Multiply Average Cylinder Liner Wear by 0.86}{\Delta Lead_{Final} = exp[(ln(\Delta Lead) x 0.95)]}$ $\frac{\Delta Lead (250-300)_{Final} = exp[(ln(\Delta Lead 250-300) x 1.03)]}{OC = exp[(ln(OC_{100-300}) x 0.96)]}$	T-11	December 6, 2005 March 24, 2006			Add -0.36% to Soot @ 12cSt Vis. Inc., Add 713 cP to		
March 24, 2006Add -0.35% to Soot @ 12cSt Vis. Inc., Add 956 cP to MRV Vis.Batch R Piston Ring & Cylinder Liner HardwareMultiply Average Cylinder Liner Wear by 0.58SWTN Hardware Completed On or Before May 18, 					MRV Vis.		
MRV Vis.Batch R Piston Ring & Cylinder Liner HardwareMultiply Average Cylinder Liner Wear by 0.58SWTN Hardware Completed On or Before May 18, 2011Multiply Average Top Ring Weight Loss by 0.95 Multiply Average Cylinder Liner Wear by 0.86 $\Delta Lead_{Final} = exp[(ln(\Delta Lead) x 0.95)]\Delta Lead (250-300)_{Final} = exp[(ln(\Delta Lead 250-300) x 1.03)]OC = exp[(ln(OC_{100-300}) x 0.96)]Multiply Average Top Ring Weight Loss by 0.92$					Add -0.35% to Soot @ 12cSt Vis. Inc., Add 956 cP to		
Batch R Piston Ring & Cylinder Liner HardwareMultiply Average Cylinder Liner Wear by 0.58SWTN Hardware Completed On or Before May 18, 2011Multiply Average Top Ring Weight Loss by 0.95Multiply Average Cylinder Liner Wear by 0.86 $\Delta Lead_{Final} = exp[(ln(\Delta Lead) x 0.95)]$ $\Delta Lead (250-300)_{Final} = exp[(ln(\Delta Lead 250-300) x 1.03)]$ $OC = exp[(ln(OC_{100-300}) x 0.96)]$ Multiply Average Top Ring Weight Loss by 0.92					MRV Vis.		
$\frac{\text{Hardware}}{\text{SWTN Hardware}}$ $\frac{\text{Multiply Average Top Ring Weight Loss by 0.95}}{\text{Multiply Average Cylinder Liner Wear by 0.86}}$ $\frac{\Delta \text{Lead}_{\text{Final}} = \exp[(\ln(\Delta \text{Lead}) \ge 0.95)]}{\Delta \text{Lead}(250-300)_{\text{Final}} = \exp[(\ln(\Delta \text{Lead} 250-300) \ge 1.03)]}$ $\frac{\Delta \text{C} = \exp[(\ln(\text{OC}_{100-300}) \ge 0.96)]}{\text{Multiply Average Top Ring Weight Loss by 0.92}}$		Batch R Piston Ring & Cylinder Liner			Multiply Average Cylinder Liner Wear by 0.58		
$\frac{\text{Multiply Average Top Ring Weight Loss by 0.95}}{\text{Multiply Average Cylinder Liner Wear by 0.86}}$ $\frac{\text{Multiply Average Cylinder Liner Wear by 0.86}}{\Delta \text{Lead}_{\text{Final}} = \exp[(\ln(\Delta \text{Lead } x 0.95)]}$ $\frac{\Delta \text{Lead}(250-300)_{\text{Final}} = \exp[(\ln(\Delta \text{Lead } 250-300) \times 1.03)]}{\text{OC} = \exp[(\ln(\text{OC}_{100-300}) \times 0.96)]}$ $\frac{\Delta \text{Multiply Average Top Ring Weight Loss by 0.92}}{\Delta \text{Lead}(250-300)_{\text{Final}} = \exp[(\ln(\Delta \text{Lead } 250-300) \times 1.03)]}$		Hardware					
$\frac{\text{SWTN Hardware}}{2011} \qquad $					Multiply Average Top Ring Weight Loss by 0.95		
$\frac{\Delta \text{Lead}_{\text{Final}} = \exp[(\ln(\Delta \text{Lead} \times 0.95)]]}{\Delta \text{Lead}(250-300)_{\text{Final}} = \exp[(\ln(\Delta \text{Lead} 250-300) \times 1.03)]}}{OC = \exp[(\ln(OC_{100-300}) \times 0.96)]}$ Multiply Average Top Ring Weight Loss by 0.92		S	WTN Hardware	2	Multiply Average Cylinder Liner Wear by 0.86		
$\frac{\Delta \text{Lead} (250-300)_{\text{Final}} = \exp[(\ln(\Delta \text{Lead} 250-300) \times 1.03)]}{\text{OC} = \exp[(\ln(\text{OC}_{100-300}) \times 0.96)]}$ Multiply Average Top Ring Weight Loss by 0.92		Complete	d On or Before	May 18,	$\Delta \text{Lead}_{\text{Final}} = \exp[(\ln(\Delta \text{Lead}) \ge 0.95)]$		
$OC = exp[(In(OC_{100-300}) \times 0.96)]$ Multiply Average Top Ring Weight Loss by 0.92		1	2011		Δ Lead (250-300) _{Final} = exp[(ln(Δ Lead 250-300) x 1.03)]		
Multiply Average Top Ring Weight Loss by 0.92					$OC = \exp[(\ln(OC_{100-300}) \times 0.96)]$		
					Multiply Average Top Ring Weight Loss by 0.92		
SWTN Hardware Multiply Average Cylinder Liner Wear by 0.83		S	WTN Hardware	e	Multiply Average Cylinder Liner Wear by 0.83		
Completed On or After $\Delta \text{Lead}_{\text{Final}} = \exp[(\ln(\Delta \text{Lead}) \ge 0.92)]$		Con	pleted On or A	fter	$\Delta \text{Lead}_{\text{Final}} = \exp[(\ln(\Delta \text{Lead}) \ge 0.92)]$		
May 19, 2011 $\Delta \text{Lead} (250-300)_{\text{Final}} = \exp[(\ln(\Delta \text{Lead} 250-300) \times 0.93)]$			May 19, 2011		$\Delta \text{Lead} (250-300)_{\text{Final}} = \exp[(\ln(\Delta \text{Lead} 250-300) \times 0.93)]$		
T-12 $OC = exp[(ln(OC_{100-300}) \times 0.95)]$	T-12				$OC = exp[(ln(OC_{100-300}) \times 0.95)]$		
Multiply Average Top Ring Weight Loss by 0.705					Multiply Average Top Ring Weight Loss by 0.705		
SWTN Hardware Multiply Average Cylinder Liner Wear by 0.946		S	WTN Hardware	2	Multiply Average Cylinder Liner Wear by 0.946		
Started On or After $\Delta \text{Lead}_{\text{Final}} = \exp[(\ln(\Delta \text{Lead}) \ge 0.923)]$		St	arted On or Afte	er	$\Delta \text{Lead}_{\text{Final}} = \exp[(\ln(\Delta \text{Lead}) \ge 0.923)]$		
June 5, 2012 Δ Lead (250-300) _{Final} = exp[(ln(Δ Lead 250-300) x 0.956)			June 5, 2012		Δ Lead (250-300) _{Final} = exp[(ln(Δ Lead 250-300) x 0.956)]		
$OC = \exp[(\ln(OC_{100-300}) \times 0.961)]$					$OC = \exp[(\ln(OC_{100-300}) \times 0.961)]$		
Multiply Average Top Ring Weight Loss by 0.849					Multiply Average Top Ring Weight Loss by 0.849		
Multiply Average Cylinder Liner Wear by 0.566					Multiply Average Cylinder Liner Wear by 0.566		
UUXO Hardware $\Delta \text{Lead}_{\text{Final}} = \exp[(\ln(\Delta \text{Lead}) \ge 0.797)]$		U	UXO Hardware	e	$\Delta \text{Lead}_{\text{Final}} = \exp[(\ln(\Delta \text{Lead}) \ge 0.797)]$		
Δ Lead (250-300) _{Final} = exp[(ln(Δ Lead 250-300) x 0.700)					Δ Lead (250-300) _{Final} = exp[(ln(Δ Lead 250-300) x 0.700)]		
$OC = \exp[(\ln(OC_{100-300}) \times 0.916)]$					$OC = \exp[(\ln(OC_{100-300}) \times 0.916)]$		
RFWT None None	RFWT		None		None		
EOAT None None	EOAT		None		None		
L-33-1 None None	L-33-1		None	1	None		
V1L686/P4L Lubrited Canadian Ridging add 0.9922. Effective for any tests completing on		V1L686/P4L	Lubrited	Canadian	Ridging add 0.9922. Effective for any tests completing on		
626A Ring or after June 12, 2001		626A	Ring	Cunturi	or after June 12, 2001		
Lubrited Ridging add 0.6065. Effective for any tests completing on			Lubrited		Ridging add 0.6065. Effective for any tests completing on		
V1L686/P4L Pinion Canadian or after August 25, 2004		V1L686/P4L	Pinion	Canadian	or after August 25, 2004		
		626A	Å.	Cuntulun			
King			Ring	Canadian	D:1: 110 5070 D:4: (0 11: 110 7240		
L-37 L247/T758A Lubrited Canadian Ridging add 0.58/8, Pitting/Spalling add 0.7340	L-37	L247/T758A	Lubrited		Ridging add 0.5878, Pitting/Spalling add 0.7340		
Pillioli Nonlyhyitad Standard Didaing add 0 2265 Dimpling add 0 2265			Plilloli Nonlubritad	Stondord	Didging odd 0 2265 Dimpling odd 0 2265		
Dinion Consider Dimiling add 0.5305, Kippinig add 0.5505			Dinion	Consider	Ridging add 0.5505, Ripping add 0.5505		
I ubrited Standard Didging add 0.2265			I ubrited	Standard	Ripping aud 0.7003		
V1L528 Pinjon Consider Pidging add 0.5979 Displing add 0.5979		V1L528	Dipion	Consider	Riuging add 0 5878 Dippling add 0 5879		
I ubrited Didging add 0.2265			I ubrited	Canadian	Ridging add 0.3365		
Ring Canadian			Ring	Canadian	Kiuging auu 0.5505		

APPENDIX B (continued) HISTORY OF INDUSTRY CORRECTION FACTORS APPLICABLE TO LTMS DATA

Test Area	Effective	Description
L-42	None	None
L-60-1	None	None
HTCT	None	None
OSCT	None	None

			Effective Dates		
Test	Parameter	S	From	То	
	Vis. Inc. @ 3.8%	1.19	19940401	19960930	
	Vis. Inc. @ 3.8%	0.93	19961001	19990131	
T-8	Vis. Inc. @ 3.8%	0.90	19990201	20070524	
	Vis. Inc. @ 3.8%	0.00	20070525	20110916	
	Vis. Inc. @ 3.8%	0.56	20110917	***	
	Rel. Vis. @ 4.8%	0.26	19970127	20070524	
	50% DIN Shear				
	Rel. Vis. @ 4.8%	0.00	20070525	20110916	
	50% DIN Shear				
T-8F	Rel. Vis. @ 4.8%	0.08	20110917	***	
1-012	50% DIN Shear				
	Rel. Vis. @ 4.8%	0.27	20020306	20070524	
	100% DIN Shear				
	Rel. Vis. @ 4.8%	0.00	20070525	20110916	
	100% DIN Shear				
	Rel. Vis. @ 4.8%	0.09	20110917	***	
	100% DIN Shear				
		511	20001201	20020115	
T-10A	MRV Viscosity	643	20020116	20020924	
		496	20020925	20030121	
		497	20030122	***	
	Soot@4.0 cSt Vis	0.23	20050528	20130702	
	Soot@12.0 cSt Vis	0.21	20030308	20130702	
	Soot@15.0 cSt V1s	0.26	20050528	20130702	
T-11	MRV Viscosity	1097	20030308	20130702	
1 11	Soot@4.0 cSt Vis	0.20	20130703	***	
	Soot@12.0 cSt Vis	0.50	20130703	***	
	Soot@15.0 cSt Vis	0.61	20130703	***	
	MRV Viscosity	584	20130703	***	
	Cyl. Liner Wear	1.6	20050219	***	
	Top Ring Wt. Loss	24.9	20050219	***	
	Oil Consumption	0.0610	20050219	***	
	$\Delta PB @ EOT$	0.2880	20050219	***	
T-12	ΔPB 250-300 h	0.3630	20050219	***	
1-12	Cyl. Liner Wear	1.6	20050219	***	
	Top Ring Wt. Loss	24.9	20050219	***	
	Oil Consumption	0.0610	20050219	***	
	$\Delta PB @ EOT$	0.2880	20050219	***	
	ΔPB 250-300 h	0.3630	20050219	***	
RFWT	Ave. Wear	0.08	19930527	19941016	
	Ave. Wear	0.05	19941017	19950625	
	Ave. Wear	0.04	19950626	***	
EOAT	Average Aeration	0.25	19990101	***	
T-12A	MRV Viscosity	331	20100216	***	

HISTORY OF SEVERITY ADJUSTMENT (SA) STANDARD DEVIATIONS (Continued)

			Effective Dates		
Test	Parameter	S	From	То	
L-33-1	Rust	0.350	20020611	***	
	Pinion Ridging	0.666	19000101	***	
L-37	Pinion Rippling	0.557	19000101	***	
Nonlubrited	Pinion Spitting	0.847	19000101	***	
	Pinion Wear	0.713	19000101	***	
	Pinion Ridging	1.430	19000101	***	
L-37	Pinion Rippling	0.476	19000101	***	
Lubrited	Pinion Spitting	0.579	19000101	***	
	Pinion Wear	0.519	19000101	***	
L-42	% Scoring	None			
	Vis. Inc.	0.15	19940603	20050420	
		0.08	20050421	***	
	Pentane	0.73	19940603	20050420	
		0.20	20050421	***	
L-60-1	Carbon/Varnish	0.45	19940603	20050420	
		0.44	20050421	***	
	Sludge	0.16	19940603	***	
	Toluene	0.75	19940603	20050420	
		0.34	20050421	***	
HTCT	Cycles	None			
	Elongation	None			
OSCT	Shore Hardness	None			
	Volume Change	None			

HISTORY OF SEVERITY ADJUSTMENT (SA) STANDARD DEVIATIONS (Continued)