4. Control Charts.

In Section 1, the construction of the control charts that constitute the Lubricant Test Monitoring System is outlined. The constants used for the construction of the control charts for the L-37, and the response necessary in the case of control chart limit alarms, are depicted below. Note that control charting all critical parameters is required.

		EWMA Chart				Shewhart Chart	
		LAMBDA		K		K	
Chart Level	Limit Type	Precision	Severity	Precision	Severity	Precision	Severity
Stand	Warning	0.2		2.24			1.80
	Action	0.2	0.2	2.81	1.96	2.10	1.80
Lab	Action	0.2	0.2	2.81	3.03		1.80
Industry	Warning	0.2	0.2	2.24	2.49		
	Action	0.2	0.2	2.88	3.03		

LUBRICANT TEST MONITORING SYSTEM CONSTANTS

The following are the steps that must be taken in the case of exceeding control chart limits.

- Exceed EWMA test stand chart action limit for severity
 - Calculate test stand Severity Adjustment (SA) for each parameter that exceeds action limit, using the current test stand EWMA (Z_i) as follows:

Non-lubrited Test Hardware:

Ridging:	$SA = (-Z_i) \times (0.666)$
Rippling:	$SA = (-Z_i) \times (0.557)$
Pitting/Spalling:	$SA = (-Z_i) \times (0.847)$
Wear:	$SA = (-Z_i) \times (0.713)$

Lubrited Test Hardware:

Ridging:	$SA = (-Z_i) x (1.430)$
Rippling:	$SA = (-Z_i) \times (0.476)$
Pitting/Spalling:	$SA = (-Z_i) \times (0.579)$
Wear:	$SA = (-Z_i) \times (0.519)$

Confirm calculations with the TMC.

- SA calculations are for information purposes only.
- Result outside acceptance band
 - Conduct an additional calibration test.

The following industry issues are handled by the TMC and do not require individual laboratory action.

- Exceed EWMA industry chart action limit
 - TMC to notify surveillance panel chairman. Meeting of the TMC and the surveillance panel required to determine course of action.
- Exceed EWMA industry chart warning limit
 - TMC to notify surveillance panel chairman. Coordination of TMC and surveillance panel required to discuss potential problem.

D5800 Volatility by Noack Test Reference Oil Targets						
		Effective	Dates	Sample Evaporation Loss		
Oil	n	From ¹	To ²	$\overline{\mathbf{X}}$	s	
51	NA	***	20000925	18.13	0.42	
	NA	***	20000925	13.39	0.40	
52	59	20000926	20030720	13.61	0.49	
	33	20030721	***	13.75	0.61	
53	NA	***	20000925	22.30	0.55	
54	NA	***	20000925	23.54	0.67	
	NA	***	20000925	16.21	0.48	
55	60	20000926	20030720	16.39	0.66	
	32	20030721	***	17.09	0.76	
58	59	20000926	20030720	14.46	0.52	
38	37	20030721	***	15.20	0.72	
VOLC12	24	20130918	***	14.19	0.73^{3}	
VOLD12	27	20130918	***	12.52	0.73^{3}	
VOLE12	27	20130918	***	16.74	0.73^{3}	

- Effective for all tests completed on or after this date.
 *** = currently in effect.
- 3 based on a pooled standard deviation of data from 2014-2016

Test	Effective			Description
Area	From	То	Condition	
T-12	***	***	All tests using UUXO Hardware	Multiply Average Top Ring Weight Loss by 0.849 Multiply Average Cylinder Liner Wear by 0.566 $\Delta \text{Lead}_{\text{Final}} = \exp[(\ln(\Delta \text{Lead}) \times 0.797)]$ $\Delta \text{Lead} (250-300)_{\text{Final}} = \exp[(\ln(\Delta \text{Lead} 250-300) \times 0.700)]$ OC = exp[(ln(OC ₁₀₀₋₃₀₀) x 0.916)]
	*	August 26, 2014	All tests using VUXO Hardware	Multiply Average Top Ring Weight Loss by 0.849Multiply Average Cylinder Liner Wear by 0.566 $\Delta Lead_{Final} = exp[(ln(\Delta Lead) x 0.797)]$ $\Delta Lead (250-300)_{Final} = exp[(ln(\Delta Lead 250-300) x 0.700)]$ $OC = exp[(ln(OC_{100-300}) x 0.916)]$
	August 26, 2014	***	All tests using VUXO Hardware	Multiply Average Top Ring Weight Loss by 0.719 Multiply Average Cylinder Liner Wear by 0.818 $\Delta \text{Lead}_{\text{Final}} = \exp[(\ln(\Delta \text{Lead}) \times 0.813)]$ $\Delta \text{Lead} (250-300)_{\text{Final}} = \exp[(\ln(\Delta \text{Lead} 250-300) \times 0.710)]$ $OC = \exp[(\ln(OC_{100-300}) \times 0.913)]$
	August 4, 2015	***	All test using VUXOA or VUXOB Hardware	
	February 25, 2016	***	All test using VUYPx	Multiply Average Top Ring Weight Loss by 0.912 Multiply Average Cylinder Liner Wear by 0.970 If $OC_{100-300} > 65.0$ $\Delta Lead(250-300)_{Final} = exp[(ln(\Delta Lead(250-300) + (65.0 - OC_{100-300}) \times 0.04021)]$ If $OC_{100-300} \le 65.0$

10-2016

History of Industry Correction Factors Appendix B

Test	Effec	tive		
Area	From	То	Condition	Correction
VIII	None		All Tests	None
Test	Effec	tive		Description
Area	From	То	Condition	
1M-PC	None		All Tests	None
1K	None		All Tests	None
	May 1, 2004	September 27, 2005	All Tests	Add -1.135 to ln(TLHC+1)
1N	September 28, 2005	March 31,2015	All Tests	Add -0.451 to ln(TLHC+1)
11N	April 1,2015	***	All Tests on	Add 0.419954 to ln(TGF+1)
		-1-1-1-	1Y3998 Liners	
1P	None		All Tests	None
1R	None		All Tests	None
C13	None		All Tests	None
COAT	None		All Tests	None
	April 21, 2011	***	All tests using	Multiply ATWL by 0.637;
ISB			11	Add -9.5 to ACSW
15D			with batch E, F,	
			and G cams	
				Multiply ATWL by 0.637;
ISB	December 11, 2011	November 12, 2012	11	Add -9.5 to ACSW
			with batch H cams	
	November 13, 2012	***	e	Multiply ATWL by 0.711;
ISB				Add -5.6 to ACSW
150			with batch H and J	
			cams	
ISM -	June 28, 2007	***	All Tests	Add +1.7 to Crosshead Wear At 3.9% Soot
				Add +19.1 to Injector Adjusting Screw Wear At 3.9% Soot
	March 4, 2010	***		Add +1.3 to Crosshead Wear At 3.9% Soot
	April 30, 2011	***		Add +2.5 to Crosshead Wear At 3.9% Soot
	November 19, 2013	***	All Tests	Add -0.200 to In(SAIAS)
	October 1, 2014	***	All Tests	Add 4 kPa to Oil Filter Delta Pressure

10-2016