Table of Contents

	Oxidation Engine Oil Simulation Test LTMS Requirements	
42.	D7528 ROBO Test LTMS Requirements	42-1
43.	D874 Sulfated Ash LTMS Requirements	43-1
APPENDIX A	History of LTMS Reference Oil Means and Standard Deviations	A- 1
APPENDIX B	History of Industry Correction Factors Applicable to LTMS Data	B-1
APPENDIX C	History of Severity Adjustment (SA) Standard Deviations	C-1
APPENDIX D	Reference Oil Viscosity Grades and Received Dates	D-1
APPENDIX E	Applying Severity Adjustments	E-1
APPENDIX F	Guidelines for Developing Reference Oil Targets – B.03 Tests	F-1
APPENDIX G	Guidelines for Developing Reference Oil Targets and Severity	
	Adjustment Standard Deviations – B.01 & B.02 Tests	G-1
APPENDIX H	Test Run Numbering	H-1

36. Oil Seal Compatibility Test LTMS Requirements

The following are the specific Oil Seal Compatibility Test calibration test requirements.

A. Reference Oils and Critical Parameters

The critical parameters are Elongation, Shore Hardness, and Volume Change. The reference oils required for test stand and test laboratory calibration are the reference oils accepted by the ASTM Oil Seal Compatibility Test Surveillance Panel. The means and standard deviations for the current reference oils for the critical parameters are presented below.

ELONGATION Unit of Measure: Percent

Reference Oil	Elastomer	Mean	Standard Deviation
160-1	Polyacrylate	23.04	14.289
160-1	Fluoroelastomer	-47.65	5.506
161-1	Polyacrylate	68.88	17.850
161-1	Fluoroelastomer	-34.57	6.989
161-1	Nitrile	10.43	10.691
162	Nitrile	-65.35	7.330
168	Nitrile	-74.52	6.965
169	Polyacrylate	49.2	21.82
169	Fluoroelastomer	-39.5	6.99
169	Nitrile	-16.2	10.69
170	Nitrile	-70.68	3.007
171	Polyacrylate	25.090	11.415
171	Fluoroelastomer	-47.949	5.947

SHORE HARDNESS Unit of Measure: Points

Reference Oil	Elastomer	Mean	Standard Deviation
160-1	Polyacrylate	-1.8	1.16
160-1	Fluoroelastomer	1.6	1.36
161-1	Polyacrylate	-24.9	2.83
161-1	Fluoroelastomer	1.6	1.30
161-1	Nitrile	-16.1	2.18
162	Nitrile	2.0	2.03
168	Nitrile	3.0	1.89
169	Polyacrylate	-16.0	2.83
169	Fluoroelastomer	0.1	1.30
169	Nitrile	-8.6	2.18
170	Nitrile	2.325	0.341
171	Polyacrylate	0.223	1.858
171	Fluoroelastomer	0.987	1.664

36-1 08-2020

VOLUME CHANGE Unit of Measure: Percent

Reference Oil	Elastomer	Mean	Standard Deviation
160-1	Polyacrylate	0.343	0.4473
160-1	Fluoroelastomer	2.053	0.4075
161-1	Polyacrylate	19.624	1.4348
161-1	Fluoroelastomer	6.199	0.7080
161-1	Nitrile	18.444	1.7057
162	Nitrile	2.460	1.5821
168	Nitrile	1.326	1.4730
169	Polyacrylate	13.1	1.43
169	Fluoroelastomer	4.4	0.71
169	Nitrile	11.8	1.71
170	Nitrile	1.500	0.718
171	Polyacrylate	-0.088	1.096
171	Fluoroelastomer	2.167	1.201

B. Acceptance Criteria

1. New Test Stand

• For each elastomer type, an operationally valid calibration test, with no Shewhart severity alarms, must be conducted on each of the two approved reference oils.

2. Existing Test Stand

• The test stand must have been TMC calibrated prior to LTMS introduction or previously accepted into the system by meeting LTMS calibration requirements.

3. Reference Oil Assignment

Once test stands have been accepted into the system, the TMC will assign reference oils for continuing calibration according to the following reference oil mix:

Elastomer Type	Oil Assignments
PA	Assign reference oils 160, 161, 169 or 171 (or subsequent reblends) for every calibration sequence.
FL	Assign reference oils 160, 161, 169 or 171 (or subsequent reblends) for every calibration sequence.
NI	Assign reference oils 161, 162, 168 or 170 (or subsequent reblends) for every calibration sequence.

36-2 08-2020

	Oil Seal Compatibility Test Reference Oil Targets										
			Effectiv	e Dates		Elongation		ardness	Volume Change		
Oil	n	Elastomer	From ¹	To ²	$\overline{\mathbf{X}}$	S	\overline{X}	S	$\overline{\mathbf{X}}$	S	
160^{3}		Polyacrylate	11-18-94	***	23.04	14.289	-1.8	1.16	0.343	0.4473	
		Fluoroelastomer	11-18-94	***	-47.65	5.506	1.6	1.36	2.053	0.4075	
160-1	144	Polyacrylate	11-18-94	***	23.04	14.289	-1.8	1.16	0.343	0.4473	
	141	Fluoroelastomer	11-18-94	***	-47.65	5.506	1.6	1.36	2.053	0.4075	
161 ⁴		Polyacrylate	11-18-94	***	68.88	17.850	-24.9	2.83	19.624	1.4348	
		Fluoroelastomer	11-18-94	***	-34.57	6.989	1.6	1.30	6.199	0.7080	
		Nitrile	11-18-94	***	10.43	10.691	-16.1	2.18	18.444	1.7057	
161-1	144	Polyacrylate	11-18-94	***	68.88	17.850	-24.9	2.83	19.624	1.4348	
	141	Fluoroelastomer	11-18-94	***	-34.57	6.989	1.6	1.30	6.199	0.7080	
	119	Nitrile	11-18-94	***	10.43	10.691	-16.1	2.18	18.444	1.7057	
162	119	Nitrile	11-18-94	***	-65.35	7.330	2.0	2.03	2.460	1.5821	
168	13	Nitrile	7-7-06	2-28-09	-74.22	2.422	3.0	1.49	1.424	0.1295	
	38	Nitrile	3-1-09	3-10-09	-74.52	1.599	3.0	0.79	1.326	0.1388	
	38	Nitrile	3-11-09	***	-74.52	6.965^{5}	3.0	1.89^{5}	1.326	1.4730^{5}	
169	19	Polyacrylate	3-7-12	***	49.2	21.82	-16.0	2.83^{6}	13.1	1.430^{6}	
	18	Fluoroelastomer	3-7-12	***	-39.5	6.99^{6}	0.1	1.30^{6}	4.4	0.71^{6}	
	22	Nitrile	3-7-12	***	-16.2	10.69^6	-8.6	2.18^{6}	11.8	1.710^6	
170	12	Nitrile	1-24-16	8-20-18	-72.75	3.416	1.500	0.674	2.275	0.449	
1/0	32	Nitrile	8-21-18	***	-70.68	3.007	2.325	0.341	1.500	0.718	
171	3	Polyacrylate	8-21-18	5-26-20	24.167	20.929	0.333	0.577	-0.233	0.306	
171	3	Fluoroelastomer	8-21-18	5-26-20	-42.6	4.2	-0.667	0.577	1.467	0.306	
171	40	Polyacrylate	5-27-20	***	25.090	11.415	0223	1.858	-0.088	1.096	
171	39	Fluoroelastomer	5-27-20	***	-47.949	5.947	0.987	1.664	2.167	1.201	

- 1 Effective for all tests completed on or after this date.
- 2 *** = currently in effect.
- 3 Targets based on oil 160-1.
- 4 Targets based on oil 161-1.
- 5 Standard deviation based on oil 162 (n=138).
- 6 Standard deviation based on oil 161-1.

A-44 08-2020

B. Acceptance Criteria

1. New Test Stand

- A minimum of four (4) operationally valid calibration tests, with no stand Shewhart severity alarms, must be conducted. Three (3) tests must be conducted on reference oil 114, 115, 116, 117 or subsequent approved reblends. All three tests must be completed on the same reference oil. The remaining one (1) calibration test must be conducted on discrimination reference oil 112, 113, 119 or subsequent approved reblends. The end of test coast side pinion scoring value of the discrimination oil must be a minimum of twice the average value of the preceding three (3) acceptable reference oil tests. If a second discrimination oil test is needed, the test, if acceptable, will count as one (1) of the 15 non-reference oil tests. In the event that neither discrimination oil test meets the above requirement, a complete new calibration sequence must be performed. The results from tests conducted on discrimination oils are not charted.
- All operationally valid calibration test results must be charted to determine if the test stand is currently "in control" as defined by the control charts from the Lubricant Test Monitoring System.

2. Existing Test Stand

- The test stand must have been an ASTM TMC calibrated test stand prior to LTMS introduction or previously accepted into the system by meeting LTMS calibration requirements.
- A test stand must complete three (3) operationally valid calibration tests, with no stand Shewhart severity alarms, on reference oil 114, 115, 116, or subsequent approved reblends. All three tests must be completed on the same reference oil. Every six months or fourth calibration sequence, an additional test must be conducted on discrimination reference oil 112, 113, 119 or subsequent approved reblends. The end of test coast side pinion scoring value of the discrimination oil must be a minimum of twice the average value of the preceding three (3) acceptable reference oil tests. If a second discrimination oil test is needed, the test, if acceptable, will count as one (1) of the 15 non-reference oil tests. In the event that neither discrimination oil test meets the above requirement, a complete new calibration sequence must be performed. The results from tests conducted on discrimination oils are not charted.

3. Reference Oil Assignment

Once test stands have been accepted into the system, the TMC will assign reference oils for continuing calibration according to the following reference oil mix:

33-3 08-2020

Gear Batch	Oil Assignments
P8L123	Assign either three 116, three 115, or three 114 oils (or subsequent reblend). Every 6 months or fourth calibration sequence, also assign one discrimination oil 112.
P8L119	Assign three 116 oils (or subsequent reblend). Every 6 months or fourth calibration sequence, also assign one discrimination oil 112 or 113.
P8L205	Assign either three 116, three 115, or three 114 oils (or subsequent reblend). Every 6 months or fourth calibration sequence, also assign one discrimination oil 112.
P8L737	Assign either three 115 or three 114 oils (or subsequent reblend). Every 6 months or fourth calibration sequence, also assign one discrimination oil 112.
P8L327	Assign either three 116 or three 115 oils (or subsequent reblend). Every 6 months or fourth calibration sequence, also assign one discrimination oil 112.
P8L604	Assign either three 116 or three 115 oils (or subsequent reblend). Every 6 months or fourth calibration sequence, also assign one discrimination oil 112.
P4L806	Assign three 116 oils (or subsequent reblend). Every 6 months or fourth calibration sequence, also assign one discrimination oil 112, 113 or subsequent reblends.
P8T025A	Assign three 116 or 117 oils (or subsequent reblend) or see the test procedure for alternate single test calibration requirements. Every 6 months or fourth calibration sequence, also assign one discrimination oil 112, 113 or subsequent reblends.
P8AD078X	Assign three 116 or 117 oils (or subsequent reblend) or see the test procedure for alternate single test calibration requirements. Every 6 months or fourth calibration sequence, also assign one discrimination oil 112, 113, 119 or subsequent reblends.
P8AD132	Assign three 116 or 117 oils (or subsequent reblend) or see the test procedure for alternate single test calibration requirements. Every 6 months or fourth calibration sequence, also assign one discrimination oil 112, 113, 119 or subsequent reblends.

Note: See Sections 1 & 2 above for more details on oil assignments.

4. Control Charts

In Section 1, the construction of the control charts that constitute the Lubricant Test Monitoring System is outlined. The constants used for the construction of the control charts for the L-42, and the response necessary in the case of control chart limit alarms, are depicted below.

33-4 08-2020

32. <u>L-37-1 LTMS Requirements</u>

The following are the specific L-37-1 calibration test requirements.

A. Reference Oils and Parameters

The critical parameters are Pinion Ridging, Pinion Rippling, Pinion Pitting/Spalling, Pinion Wear, and Pinion Scoring. The reference oils required for test stand and test laboratory calibration are reference oils accepted by the ASTM L-37/L-37-1 Surveillance Panel. The means and standard deviations for the current reference oils for each critical parameter are presented below.

RIDGING Unit of Measure: Merits

Pinion Batch	Hardware	Reference Oil	Mean	Standard Dev.
Gleason 04-2014,		134/134-1	4.1	0.9
	NONLUBRITED	152-2	9.0	0.8
06-2018, 2019/20		155-1	9.5	0.5
		134/134-1	6.1	2.4
Gleason 04-2014	LUBRITED	152-2	9.7	0.5
		155-1	9.3	1.0

RIPPLING
Unit of Measure: Merits

Pinion Batch	Hardware	Reference Oil	Mean	Standard Dev.
		134/134-1	7.4	1.4
Gleason 04-2014, 06-2018, 2019/20	NONLUBRITED	152-2	8.3	1.2
00-2016, 2017/20		155-1	8.6	1.1
		134/134-1	7.4	1.6
Gleason 04-2014	LUBRITED	152-2	9.3	0.5
		155-1	8.7	0.7

32-1 08-2020

PITTING/SPALLING Unit of Measure: Merits

Pinion Batch	Hardware	Reference Oil	Mean	Standard Dev.
Gleason 04-2014, 06-2018, 2019/20		134/134-1	7.9	2.0
	NONLUBRITED	152-2	9.9	0.1
		155-1	9.9	0.0
Gleason 04-2014		134/134-1	9.9	0.1
	LUBRITED	152-2	9.7	0.6
		155-1	9.9	0.0

WEAR Unit of Measure: Merits

Pinion Batch	Hardware	Hardware Reference Oil		Standard Dev.
Gleason 04-2014, 06-2018, 2019/20		134/134-1	5.3	0.9
	NONLUBRITED	152-2	7.6	0.7
		155-1	7.5	0.7
Gleason 04-2014		134/134-1	6.8	0.9
	LUBRITED	152-2	8.2	0.7
		155-1	7.9	0.8

SCORING Non-lubrited & Lubrited Test Hardware Unit of Measure: Merits

At the present time, no targets are available for Scoring. As a result, Pinion Scoring cannot be charted. However, the TMC will monitor the reporting of scoring values for results that are different from 10.00 and report occurrences to the surveillance panel. Any reference oil test exhibiting Pinion Scoring less than 10.00 is unacceptable for calibration.

B. Acceptance Criteria

1. New Stand

32-2 08-2020

				L-3	37-1 Refer	ence O	il Target	ES .					
								Rippling Spitting		Wear			
Hardware	Pinion Batch	Oil	n	From ¹	То	\overline{X}	s	\overline{X}	S	\overline{X}	S	\overline{X}	S
TED	.014, 9/20	134/ 134-1	24	20200521	***	4.1	0.9	7.4	1.4	7.9	2.0	5.3	0.9
NONLUBRITED Gleason 04-2014, 06-2018, 2019/20	on 04-2 18, 201	152-2	28	20200521	***	9.0	0.8	8.3	1.2	9.9	0.1	7.6	0.7
	Gleaso 06-20	155-1	21	20200521	***	9.5	0.5	8.6	1.1	9.9	0.0	7.5	0.7
LUBRTIED	.014	134/ 134-1	12	20191001	***	6.1	2.4	7.4	1.6	9.9	0.1	6.8	0.9
	Gleason 04-2014	152-2	9	20191001	***	9.7	0.5	9.3	0.5	9.7	0.6	8.2	0.7
	Glea	155-1	9	20191001	***	9.3	1.0	8.7	0.7	9.9	0.0	7.9	0.8

¹ Effective for all tests completed on or after this date. 2 *** = currently in effect.

A-40 08-2020

43. <u>D874 Sulfated Ash LTMS Requirements</u>

The following are the specific D874 Sulfated Ash calibration requirements.

A. Reference Oils and Critical Parameters

1. The critical pass/fail parameter is Mass % Sulfated Ash. The reference oils, performance targets and acceptance criteria required for the test stand calibration with the TMC are listed in Table 1 and have been approved by the ASTM D02.B0.07 Sulfated Ash Surveillance Panel.

<u>Table 1</u>
D874 (Sulfated Ash) Reference Oil Targets and Acceptance Bands Effective 20001002

Acceptance Bands* 95% **Test** Oil Code **Parameter** Mean \mathbf{sR} Lower Upper n Sulfated Ash 90 Mass % Sulfated Ash 27 1.07 0.91 1.23 0.08 91 Mass % Sulfated Ash 27 0.82 0.05 0.72 0.92 by D874 820-2 Mass % Sulfated Ash 27 1.57 0.08 1.40 1.73

*95% Acceptance Bands = Mean \pm (1.960 x sR)

B. Test Stand Defined

1. This test method does not have a specific instrument or test stand to be calibrated, but rather is a wet-chemistry process. The TMC D874 calibration program is to periodically confirm the expected results of the D874 test process at each participating lab using oils of known performance in the test (reference oils). Therefore, the 'test stand' is defined as the participating lab ID for this test.

C. Acceptance Criteria

1. New Laboratories

- a. A minimum of two (2) operationally valid calibration tests which fall within the acceptance bands for the oils assigned are required to calibrate a lab for the first time. These must be simultaneous or consecutive runs, though exceptions can be made at the sole discretion of the TMC for operational fails for reasons that would be considered to have had no bearing on the operational performance of the test stand for subsequent tests.
- b. Passing two back-to-back consecutive TMC calibrations places the lab's D874 process in TMC calibrated status. Both tests must pass on operational and statistical criteria.

43-1 08-2020

c. TMC calibrated status of a lab's D874 process is valid for no more than 90 days from date completed of a valid TMC calibration. To renew the calibration at the end of the calibration period, see Item 2 for Existing Laboratory.

2. Existing Laboratory

- a. An existing TMC calibrated lab, or one where the TMC calibrated status had expired within the past 90 days, can renew its TMC calibrated status by demonstrating a successful calibration on another single TMC blind calibration audit. The test must pass on both operational and statistical criteria.
- b. TMC calibrated status of an existing lab process is valid for no more than 90 days from date completed of a valid TMC calibration (that is, the day of the final ash weighing). Labs that exceed these time/run specifications are considered to be out of calibration for TMC monitoring purposes.
- c. A lab that has been out of TMC calibration for more than 90 days from the prior TMC calibration expiration date will require New Laboratory calibration as listed in C.1.a through C.1.c. of this document.
- d. A lab must pass the TMC calibration within two operationally valid test runs. If a lab cannot produce a calibration test that falls into the acceptance bands for the assigned oil within two operationally valid runs, renewing calibration on that stand will require the two-test calibration as listed in C.1.a through C.1.c.

3. Tracking and Reporting Lab ID's

a. Tracking a lab's calibration status will be effected by tracking the lab's two letter lab ID, Date Completed and the calibration test sulfated ash results.

4. Reference Oil Assignment:

a. Of the two tests required to bring a new lab into TMC calibrated status, the tests shall be conducted on reference oils listed in Table 1, or reblends or replacement oils as approved by the surveillance panel. Once a lab has attained TMC calibrated status (existing test lab), 100% of the scheduled calibration tests shall be conducted on an assigned blind reference oil sample from the currently accepted set of reference oils. There shall be no preference for any one reference oil in blind calibration runs, and each shall be assigned for approximately 1/3 of the passing runs at each lab.

5. Mandatory QC Check Sample

a. All TMC-monitored instruments must utilize TMC reference oil 90 to comply with the Quality Control sections of D874 test method. The frequency is to be one QC oil run with each batch of routine test samples and the QC test result must be in the approved acceptance range for TMC reference oil 90. A non-

43-2 08-2020

- conforming result places the results of the batch of samples run concurrently in question and all must be rerun.
- b. One-liter aliquots of TMC oil 90, for use as a D874 daily QC check fluid, are available for purchase from the TMC.

6. Calibration Test Evaluation:

a. The calibration status of the lab will be based on a review of operational parameters for compliance with the test method, followed by a statistical evaluation of the critical parameter test result against the acceptance ranges in Section A, Table 1 (commonly referred to as a Shewhart severity evaluation). Unless otherwise noted, the acceptance bands in Section A are based on a 95% confidence treatment of round robin test results with data exclusions as approved by the surveillance panel.

7. Introduction of New or Re-Blended Reference Oils

Introduction of new or replacement reference oils will be conducted at the discretion of the surveillance panel. Participating laboratories may be asked to donate tests on the new oil(s) to establish baseline performance in the D874 Sulfated Ash test. The number of tests requested will be sufficient to rigorously evaluate the oil's performance. Preliminary statistical performance targets and acceptance criteria will be established by the surveillance panel, and those values will be re-assessed as the TMC collects additional calibration data.

43-3 08-2020

D874 Test Reference Oil Targets							
		Effective Dates Sulfated Ash, mass %					
Oil	n	From ¹ To ²		\overline{X}	S		
90	27	20070206	***	1.07	0.08		
91	27	20070726	***	0.82	0.50		
830-2	27	20070726	***	1.57	0.80		

<sup>Effective for all tests completed on or after this date.
*** = currently in effect.</sup>

A-51 08-2020

18. <u>C13 LTMS Requirements</u>

The following are the specific C13 calibration test requirements.

A. Reference Oils and Parameters

The critical parameters are Top Groove Carbon, Top Land Carbon, Oil Consumption Delta, and Second Ring Top Carbon. The reference oils required for test stand and test laboratory calibration are reference oils accepted by the ASTM C13 Surveillance Panel. The mean and standard deviation for the current reference oils for test parameters are presented below.

TOP GROOVE CARBON Unit of Measure: Demerits Normal K Value

Reference Oil	Mean	Standard Deviation
831-3	46.02	5.90
831-4	46.02	5.90

TOP LAND CARBON Unit of Measure: Demerits Normal K Value

Reference Oil	Mean	Standard Deviation
831-3	21.87	7.89
831-4	21.87	7.89

OIL CONSUMPTION DELTA Unit of Measure: SQRT (g/h) Normal K Value

Reference Oil	Mean	Standard Deviation
831-3	5.5089	0.7141
831-4	5.5089	0.7141

18-1 08-2020

SECOND RING TOP CARBON Unit of Measure: LN (Demerits) Expanded K Value

Reference Oil	Mean	Standard Deviation
831-3	2.8828	0.2900
831-4	2.8828	0.2900

B. Acceptance Criteria

1. New Test Stand

- a. First Test Stand in a Laboratory
 - A minimum of two (2) operationally valid calibration tests with no stand Shewhart severity alarms, must be conducted on any approved reference oil.
- b. All Subsequent New Test Stands in a Laboratory
 - One operationally valid test with no stand Shewhart severity alarms must be conducted on any approved reference oil.

2. Existing Test Stand

- The test stand must have been previously accepted into the system by meeting LTMS calibration requirements.
- One operationally valid test with no stand Shewhart severity alarms must be conducted on any approved reference oil.

3. Reference Oil Assignment

Once test stands have been accepted into the system, the TMC will assign reference oils for continuing calibration according to the following reference oil mix:

• 100% of the scheduled calibration tests should be conducted on reference oil 831 (or subsequent approved reblends).

4. Control Charts

In Section 1, the construction of the four control charts that constitute the Lubricant Test Monitoring System is outlined. The constants used for the construction of the control charts for the C13, and the response necessary in the case of control chart limit alarms, are depicted below.

18-2 08-2020

	C13 Reference Oil Targets										
		Effectiv	ve Dates	Top Groove Carbon Top Land Carbon C		Oil Consu	Oil Consumption Δ^2		2 nd Ring Top Carbon ³		
Oil	n	From	To^1	\overline{X}	S	\overline{X}	S	\overline{X}	S	\overline{X}	S
PC10A	3	5-28-05	2-20-06	45.55	6.44	23.18	5.57	6.2676	0.8226	2.3301	0.3430
PC10C	2	5-28-05	2-20-06	54.57	2.92	26.98	0.21	5.7229	1.8966	3.2447	0.3966
PC10D	3	5-28-05	2-20-06	39.18	5.85	23.58	2.33	3.8405	1.8509	2.4426	0.3400
PC10E	7	5-28-05	2-20-06	45.52	8.02	23.52	7.02	4.8593	1.4265	2.8197	0.4024
PC10F	3	5-28-05	2-20-06	54.08	11.09	36.32	2.82	6.5929	0.9750	3.8424	0.2573
PC10G	3	5-28-05	2-20-06	35.85	2.83	29.05	0.84	3.8066	0.8456	2.7134	0.1936
831 (PC10B)	8	5-28-05	3-12-08	45.18	7.42	24.99	7.59	5.7336	0.7280	2.8945	0.2055
	14	3-13-08	***	46.02	5.90	21.87	7.89	5.5089	0.7141	2.8828	0.2900
831-14		05-10-08	***	46.02	5.90	21.87	7.89	5.5089	0.7141	2.8828	0.2900
831-24	-	08-06-13	***	46.02	5.90	21.87	7.89	5.5089	0.7141	2.8828	0.2900
831-34	1	06-16-15	***	46.02	5.90	21.87	7.89	5.5089	0.7141	2.8828	0.2900
831-44		05-19-20	***	46.02	5.90	21.87	7.89	5.5089	0.7141	2.8828	0.2900

A-23 08-2020

 ^{*** =} Currently in effect
 Transformation for Oil Consumption Delta is sqrt(OC Δ)
 Transformation for 2nd Ring Top Carbon is ln(R2TC)
 Targets based on oil 831

30. L-33-1 LTMS Requirements

The following are the specific L-33-1 calibration test requirements.

A. Reference Oils and Critical Parameter

The critical parameter is Final Rust. The reference oils required for test stand and test laboratory calibration are reference oils accepted by the ASTM L-33-1 Surveillance Panel. The mean and standard deviations for the current reference oils for the critical parameter are presented below.

FINAL RUST
Unit of Measure: Merits
Gear Versions V99.1 & V01.1

Reference Oil	Mean	Standard Deviation		
123	8.560	0.230		
123-2	8.740	0.260		
151-3	9.640	0.250		
155	9.580	0.250		
155-1	9.580	0.250		

FINAL RUST Unit of Measure: Merits Gear Version AAM K2XX

Reference Oil	Mean	Standard Deviation
123-2	8.37	0.39
155-1	9.47	0.13

B. Acceptance Criteria

1. New Test Stand

- A minimum of two (2) operationally valid calibration tests, with no stand Shewhart severity alarms, must be conducted on any approved reference oils assigned by the TMC.
- All operationally valid calibration test results must be charted to determine if the test stand is currently "in control" as defined by the control charts from the Lubricant Test Monitoring System.

2. Existing Test Stand

30-1 08-2020

		L-	33-1 Reference Oi	1 Targets		
			Effective	e Dates]	Rust
Oil	Gear Version	n	From ¹	To	\overline{X}	S
121	V94.1	12 ²	6-5-96	4-19-00	9.370^{2}	0.280^{2}
	V95.1	122	6-5-96	4-19-00	9.370^{2}	0.280^{2}
121-1	V94.1		1-19-98	4-29-99	9.370^{3}	0.280^{3}
	V94.1	45 ²	4-30-99	11-17-00	9.390^{2}	0.218^{2}
	V95.1		1-19-98	4-29-99	9.370^{3}	0.280^{3}
	V95.1	45 ²	4-30-99	11-17-00	9.390^{2}	0.218^{2}
	V99.1	8	4-20-00	11-17-00	9.830	0.260^{4}
121-2	V94.1		12-14-99	11-17-00	9.3905	0.2185
	V95.1		12-14-99	11-17-00	9.3905	0.2185
	V99.1		4-20-00	11-17-00	9.830^{6}	0.260^{4}
123	V94.1	54 ²	5-5-95	4-19-00	9.000^{2}	0.330^{2}
	V95.1	54 ²	5-5-95	4-19-00	9.000^{2}	0.330^{2}
	V99.1	12	6-11-02	8-24-04	8.430	0.390
	V01.1		11-25-02	8-24-04	8.430^{10}	0.390^{10}
	V99.1 & V01.1	30	8-25-04	***	8.560	0.230
123-1	V94.1	137	4-20-00	11-17-00	8.2407	0.330^{8}
	V95.1		12-14-99	4-19-00	9.000^{9}	0.3309
	V95.1	137	4-20-00	11-17-00	8.2407	0.330^{8}
	V99.1	137	4-20-00	11-17-00	8.2407	0.330^{8}
123-2	V99.1		11-25-02	8-24-04	8.430^{10}	0.390^{10}
	V99.1 & V01.1		8-25-04	6-1-06	8.560 ⁹	0.230^{9}
	V99.1 & V01.1	15	6-2-06	***	8.740	0.260
	AAM K2XX	10	6-24-16	06-28-17	8.05	0.43
	AAM K2XX	19	6-29-17	11-07-17	8.09	0.41
	AAM K2XX	22	11-08-17	0-01-20	8.12	0.38
	AAM K2XX	19	01-02-20	***	8.37	0.39
151-3	V99.1	13	6-11-02	8-24-04	9.690	0.350
	V01.1		11-25-02	8-24-04	9.690^{11}	0.350^{11}
	V99.1 & V01.1	30	8-25-04	***	9.640	0.250
155	V99.1 & V01.1		6-2-06		9.580	0.250^{12}
155-1	V99.1 & V01.1		4-4-12		9.580	0.250^{12}
	AAM K2XX	9	6-24-16	06-28-17	9.26	0.12
	AAM K2XX	20	6-29-17	11-07-17	9.24	0.19
	AAM K2XX	23	11-08-17	01-01-20	9.25	0.22
	AAM K2XX	20	01-02-20	***	9.47	0.13

- 1 Effective for all tests completed on or after this date.
- 2 Based on V94.1 & V95.1 data.
- 3 Based on oil 121 data.
- 4 Based on lab pooled s of V94.1 & V95.1 data (all blends of oil 121).
- 5 Based on oil 121-1 data.
- 6 Based on V99.1 data on oil 121-1.

- 7 Based on V99.1 and V95.1 data.
- 8 Based on lab pooled s of V94.1 & V95.1 data (all blends of oil 123).
- 9 Based on oil 123 data.
- 10 Based on V99.1 data on oil 123.
- 11 Based on V99.1 data on oil 151-3.
- 12 Based on V99.1 & V01.1 data on oil 151-3.

A-36 08-2020

History of Industry Correction Factors Appendix B

Test	Effe	ctive	Com	Condition		Description
Area	From	То				Description
L-33-1	20200102	***	AAM K2XX			Add +1 to rated areas 2 and 3. Do not exceed 10.
	20010612	***	V1L686/P4L626A Non-reference	Lubrited Ring	Canadian	Ridging add 0.9922
	20040825	***	V1L686/P4L626A Non-reference	Lubrited Pinion & Ring	Canadian	Ridging add 0.6065
	***	***	L247/T758A Non-reference	Lubrited Pinion	Canadian	Ridging add 0.5878, Pitting/Spalling add 0.7340
				Nonlubrited	Standard	Ridging add 0.3365, Rippling add 0.3365
L37	27			Pinion	Canadian	Rippling add 0.7885
L3/	***	20130514	30514 V1L528/P4T883A Non-reference	Lubrited	Standard	Ridging add 0.3365
		20130314		Pinion	Canadian	Ridging add 0.5878, Rippling add 0.5878
				Lubrited Ring	Canadian	Ridging add 0.3365
				Nonlubrited	Standard	Ridging add 0.3365, Rippling add 0.3365
				Pinion	Canadian	Rippling add 0.7566
	20130515	***	V1L528/P4T883A	Lubrited	Standard	Ridging add 0.3365
	20130313		Non-reference	Pinion	Canadian	Ridging add 0.5878, Rippling add 0.5878
				Lubrited Ring	Canadian	Ridging add 0.3365
L-37-1	None	***	All	Tests		None
L-42	20140529	***	All reference oil	All reference oil tests using oil 117		Add 6% to pinion scoring result and add 4% to ring scoring result
L-60-1	20151001	***	All	tests		Add 0.6 merits to ACV
HTCT			N	one		None
OSCT			N	one		None

Test	Effe	ctive		Description
Area	From	То	Condition	_
D874	None		All Tests	None
D5800	None		All Tests	None

B-8 08-2020

31. <u>L-37 LTMS Requirements</u>

The following are the specific L-37 calibration test requirements.

A. Reference Oils and Parameters

The critical parameters are Pinion Ridging, Pinion Rippling, Pinion Pitting/Spalling, Pinion Wear, and Pinion Scoring. The reference oils required for test stand and test laboratory calibration are reference oils accepted by the ASTM L-37 Surveillance Panel. The means and standard deviations for the current reference oils for each critical parameter are presented below.

RIDGING Unit of Measure: Merits

Hardware	Pinion Batch	Reference	Mean	Standard	Acceptance
пагажаге	Pinion Batch	Oil	Mean	Dev.	Band
		128-1	7.40	0.516	6 - 8
	L247/T758A	151-3	8.80	0.422	8 - 10
		155	9.00	0.000	9 - 9
_		128-1	6.35	0.813	5 - 8
ED		151-3	6.43	1.207	4 - 9
	V1L686/P4L626A	152	5.25	0.500	4 - 6
LUBRITED		153	5.00	0.000	5 - 5
1 2		155	7.00	0.000	7 - 7
		134	7.214	0.802	6 - 8
	V1L528/P4T883A	152-1	6.500	1.769	4 - 9
		152-2	6.500	1.769	4 - 9
		155	8.286	0.825	7 - 9
		151-3	9.47	0.507	9 - 10
		152	9.17	0.408	8 - 10
	V1L417/P4L792	152-1	9.47	0.640	8 - 10
ED	V1L41//F4L/92	153	9.00	0.816	8 - 10
NONLUBRITED		153-1	8.80	0.616	8 - 10
BR		155	9.50	0.527	9 - 10
<u> </u>	V1L500/P4T813	152-1	8.85	0.689	8 - 10
	V1L300/P41813	155	9.07	0.594	8 - 10
N		134	6.182	1.328	4 - 8
	V1L528/P4T883A	152-1	7.583	1.832	5 - 10
		152-2	7.583	1.832	5 - 10
		155	8.714	0.611	8 - 9

31-1 08-2020

RIPPLING
Unit of Measure: Merits

Hardware	Pinion Batch	Reference Oil	Mean	Standard Dev.	Acceptance Band
		128-1	7.60	1.075	6 - 10
	L247/T758A	151-3	8.60	0.516	8 - 10
		155	8.00	0.000	8 - 8
		128-1	7.20	1.473	5 - 10
ED		151-3	8.71	0.463	8 - 10
LUBRITED	V1L686/P4L626A	152	8.25	0.500	7 - 9
BR		153	8.00	0.000	8 - 8
1 2		155	9.00	0.000	9 - 9
		134	7.429	1.284	6 - 9
	V1L528/P4T883A	152-1	8.792	0.833	8 - 10
		152-2	8.792	0.833	8 - 10
		155	8.786	0.699	8 - 10
		151-3	9.33	0.606	8 - 10
		152	9.17	0.408	8 - 10
	V1L417/P4L792	152-1	9.40	0.507	8 - 10
G G	V1L41//P4L/92	153	8.25	0.500	7 - 9
		153-1	8.90	0.447	8 - 10
NONLUBRITED		155	9.60	0.516	9 - 10
	V1L500/P4T813	152-1	9.39	0.506	8 - 10
	V1L300/P41813	155	9.33	0.488	8 - 10
NO		134	8.364	0.809	7 - 9
	V1L528/P4T883A	152-1	8.917	0.669	7 - 10
		152-2	8.917	0.669	8 - 10
		155	8.714	0.726	8 - 10

31-2 08-2020

PITTING/SPALLING Unit of Measure: Merits

Hardware	Pinion Batch	Reference Oil	Mean	Standard Dev.	Acceptance Band
		128-1	9.02	0.892	7 - 10
	L247/T758A	151-3	9.49	0.586	8 - 10
		155	9.30	0.000	9.3 - 9.3
		128-1	9.77	0.421	9 - 10
ED		151-3	9.68	0.632	9 - 10
	V1L686/P4L626A	152	9.53	0.359	9 - 10
BR		153	9.30	0.424	9 - 10
LUBRITED		155	9.90	0.000	9.9 - 9.9
		134	9.364	1.302	7 - 10
	V1L528/P4T883A	152-1	8.533	1.720	6 - 10
		152-2	8.533	1.720	6 - 10
		155	9.893	0.027	9.8 - 9.9
		151-3	9.71	1.080	8 - 10
		152	9.90	0.000	9.9 - 9.9
	V1L417/P4L792	152-1	9.44	1.782	6 - 10
Œ	V1L41//P4L/92	153	9.88	0.050	9.8 - 10
		153-1	9.89	0.049	9.8 - 10
NONLUBRITED		155	9.90	0.040	9.8 - 10
	V1L500/P4T813	152-1	9.89	0.028	9.8 - 9.9
	V1L300/P41813	155	9.84	0.124	9.6 - 10
NON		134	4.364	3.491	0 - 10
	V1L528/P4T883A		8.883	1.872	6 - 10
		152-2	8.883	1.872	6 - 10
		155	9.514	1.038	8 - 10

31-3 08-2020

WEAR Unit of Measure: Merits

Hardware	Pinion Batch	Reference Oil	Mean	Standard Dev.	Acceptance Band
		128-1	5.80	0.422	5 - 7
	L247/T758A	151-3	6.00	0.422	6 - 6
	L24//1/38A				
		155	6.00	0.000	6 - 6
		128-1	6.40	0.598	5 - 7
LUBRITED		151-3	6.57	0.598	5 - 8
I	V1L686/P4L626A	152	6.25	0.500	5 - 7
BI		153	5.50	0.707	4 - 7
177		155	7.00	0.000	7 - 7
		134	6.357	0.497	6 - 7
	V1L528/P4T883A	152-1	6.208	0.833	5 - 7
		152-2	6.208	0.833	5 - 7
		155	6.929	0.267	6 - 7
		151-3	8.00	0.587	7 - 9
		152	8.00	0.632	7 - 9
	X/11 /17/D/1 700	152-1	8.00	0.378	7 - 9
A	V1L417/P4L792	153	7.50	0.577	6 - 9
NONLUBRITED		153-1	7.55	0.605	6 - 9
BR.		155	8.00	0.289	7 - 9
Ę	V11 500/D4T012	152-1	7.46	0.519	7 - 8
	V1L500/P4T813	155	7.47	0.516	7 - 8
9		134	5.545	0.820	5 - 7
	V1L528/P4T883A	152-1	6.500	0.522	6 - 7
		152-2	6.500	0.522	6 - 7
		155	6.714	0.469	6 - 7

SCORING Non-lubrited & Lubrited Test Hardware Unit of Measure: Merits

At the present time, no targets are available for Scoring. As a result, Pinion Scoring cannot be charted. However, the TMC will monitor the reporting of scoring values for results that are different from 10.00 and report occurrences to the surveillance panel. Any reference oil test exhibiting Pinion Scoring less than 10.00 is unacceptable for calibration.

31-4 08-2020

	L-37 Reference Oil Targets																
							Ridging			Rippling Spitting				Wear			
	Pinion Batch	Oil	n	From	То	\overline{X}	S	Bands	\overline{X}	s	Bands	\overline{X}	S	Bands	\overline{X}	s	Bands
		128	15	19000101	***	6.53	1.407	4 - 9	7.63	1.420	5 - 10	8.83	1.754	6 - 10	5.60	1.298	3 - 8
	C1L308	128-1	7	19000101	***	7.00	0.000	7 - 7	8.00	0.577	7 - 9	8.84	1.723	6 - 10	5.57	0.535	5 - 7
		129	5	19000101	***	9.00	0.000	9 - 9	8.40	0.894	7 - 10	9.56	0.089	9.4 - 9.7	6.80	1.483	4 - 9
		128	7	19000101	***	7.57	0.976	6 - 9	8.29	1.380	6 - 10	6.83	2.357	3 - 10	5.71	0.488	5 - 7
	C1L426	128-1	7	19000101	***	7.71	1.113	6 - 10	7.86	0.690	7 - 9	7.57	3.187	2 - 10	6.00	0.577	5 - 7
		129	2	19000101	***	9.00	0.000	9 - 9	9.50	0.707	8 - 10	9.60	0.141	9.3 - 9.9	7.50	0.707	6 - 9
		128-1	10	19000101	***	7.40	0.516	6 - 8	7.60	1.075	6 - 10	9.02	0.892	7 - 10	5.80	0.422	5 - 7
	L247	151-3	10	19000101	***	8.80	0.422	8 - 10	8.60	0.516	8 - 10	9.49	0.586	8 - 10	6.00	0.000	6 - 6
		155	1	19000101	***	9.00	0.000	9 - 9	8.00	0.000	8 - 8	9.30	0.000	9.3 - 9.3	6.00	0.000	6 - 6
		128	1	19000101	***	7.00	0.000	7 - 7	7.00	0.000	7 - 7	8.00	0.000	8 - 8	6.00	0.000	6 - 6
Q	V1L303	128-1	30	19000101	***	7.30	1.264	5 - 10	6.97	1.497	4 - 10	5.26	3.144	0 - 10	5.67	0.959	4 - 7
LUBRITED		129	9	19000101	***	8.11	0.601	7 - 9	8.56	0.527	8 - 10	9.61	0.366	9 - 10	6.56	0.527	6 - 8
3RI		128-1	20	19000101	***	6.35	0.813	5 - 8	7.20	1.473	5 - 10	9.77	0.421	9 - 10	6.40	0.598	5 - 7
E S		151-3	21	19000101	***	6.43	1.207	4 - 9	8.71	0.463	8 - 10	9.68	0.632	9 - 10	6.57	0.598	5 - 8
l	V1L686	152	4	19000101	***	5.25	0.500	4 - 6	8.25	0.500	7 - 9	9.53	0.359	9 - 10	6.25	0.500	5 - 7
		153	2	19000101	***	5.00	0.000	5 - 5	8.00	0.000	8 - 8	9.30	0.424	9 - 10	5.50	0.707	4 - 7
		155	1	19000101	***	7.00	0.000	7 - 7	9.00	0.000	9 - 9	9.90	0.000	9.9 - 9.9	7.00	0.000	7 - 7
		134	4	19000101	20180606	7.00	1.155	4 - 10	7.00	1.414	4 - 10	8.83	0.974	7 - 10	6.00	0.242	5 - 7
			14	20180607	***	7.214	0.802	6 - 8	7.429	1.284	6 - 9	9.364	1.302	7 - 10	6.357	0.497	6 - 7
		152-1	6	19000101	20180606	8.00	0.632	7 - 10	8.83	0.753	7 - 10	9.88	0.041	9.3 - 10	7.00	0.242	6 - 8
	V1L528		24	20180607	***	6.5	1.769	4 – 9	8.792	0.833	8 - 10	8.533	1.72	6 - 10	6.208	0.833	5 - 7
	♥ 1L326	152-2	6	19000101	20180606	8.00	0.632	7 - 10	8.83	0.753	7 - 10	9.88	0.041	9.3 - 10	7.00	0.242	6 - 8
			24	20180607	***	6.5	1.769	4 – 9	8.792	0.833	8 - 10	8.533	1.72	6 - 10	6.208	0.833	5 - 7
		155	8	19000101	20180606	8.29	0.488	7 - 10	8.86	0.690	7 - 10	9.90	0.436	9 - 10	6.86	0.378	6 - 8
			14	20180607	***	8.286	0.825	7 - 9	8.786	0.699	8 - 10	9.893	0.027	9.8 - 9.9	6.929	0.267	6 - 7

A-37 08-2020

	L-37 Reference Oil Targets																
]	Ridging			Rippling			Spitting		Wear		
	Pinion Batch	Oil	n	From	То	\overline{X}	S	Bands	\overline{X}	S	Bands	\overline{X}	S	Bands	\overline{X}	S	Bands
	V1L500	152-1	13	19000101	***	8.85	0.689	8 - 10	9.39	0.506	8 - 10	9.89	0.028	9.8 - 9.9	7.46	0.519	7 - 8
	V1L300	155	15	19000101	***	9.07	0.594	8 - 10	9.33	0.488	8 - 10	9.84	0.124	9.6 - 10	7.47	0.516	7 - 8
		127	9	19000101	***	7.00	2.000	3 - 10	7.56	1.236	5 - 10	9.71	0.643	9 - 10	6.67	0.500	6 - 8
		128-1	8	19000101	***	7.50	0.926	6 - 9	5.63	1.188	3 - 8	9.93	0.046	9.8 - 10	6.88	0.641	6 - 8
	V1L686	129	2	19000101	***	9.50	0.707	8 - 10	10.00	0.000	10 - 10	10.00	0.000	10 - 10	8.00	1.414	5 - 10
ľΕ		151-2	11	19000101	***	9.09	0.701	8 - 10	8.73	0.647	8 - 10	9.92	0.040	9.8 - 10	7.55	0.688	6 - 9
R		151-3	1	19000101	***	9.00	0.000	9 - 9	8.00	0.000	8 - 8	9.90	0.000	9.9 - 9.9	7.00	0.000	7 - 7
NONLUBRITED		134	5	19000101	20180606	6.40	1.673	3 - 9	8.40	0.894	6 - 10	3.80	1.483	1 - 7	5.60	0.894	4 - 8
			11	20180607	***	6.128	1.328	4 - 8	8.364	0.809	7 - 9	4.364	3.491	0 - 10	5.545	0.820	5 - 7
Ō		152-1	8	19000101	20180606	8.75	0.707	7 - 10	8.63	0.916	7 - 10	9.45	1.003	7 - 10	7.00	0.500	6 - 8
	V1L528		12	20180607	***	7.583	1.832	5 - 10	8.917	0.669	8 - 10	8.883	1.872	6 - 10	6.5	0.522	6 - 7
	V1L326	152-2	8	19000101	20180606	8.75	0.707	7 - 10	8.63	0.916	7 - 10	9.45	1.003	7 - 10	7.00	0.500	6 - 8
			12	20180607	***	7.583	1.832	5 - 10	8.917	0.669	8 - 10	8.883	1.872	6 - 10	6.5	0.522	6 - 7
		155	9	19000101	20180606	8.56	0.882	7 - 10	8.44	1.014	6 - 10	8.70	1.578	5 - 10	6.78	0.441	6 - 8
			14	20180607	***	8.714	0.611	8 - 9	8.714	0.726	8 – 10	9.514	1.038	8 - 10	6.714	0.469	6 - 7

A-39 08-2020

MRV VISCOSITY Unit of Measure: cP NONCRITICAL PARAMETER

Reference Oil	Mean	Standard Deviation		
820-3	14981	916		
822-1	13948	584		
822-2	13948	1156		

B. Acceptance Criteria

1. New Test Stand

- a. Less than four (4) Operationally Valid Calibration Results in Laboratory
 - A minimum of two (2) operationally valid calibration tests with no stand Shewhart severity alarms, must be conducted on any approved reference oil.
 - All operationally valid calibration test results must be charted to determine if the test stand is currently "in control" as defined by the control charts from the Lubricant Test Monitoring System.
- b. Four (4) or more Operationally Valid Calibration Results in Laboratory*
 - The first operationally valid calibration test run on any approved reference oil must have no stand Shewhart severity alarms using the "Reduced K" values. If the first operationally valid calibration test does not meet this acceptance criteria, then the New Test Stand criteria listed above in 1.a must be followed.
- * Only test results from calibrated stands in the laboratory count toward the tally of four (4) required operationally valid calibration tests. The fourth test must complete (date and time) before the first test completes (date and time) on a New Test Stand that is seeking calibration with a single test result. In addition, the first test for the stand is to begin within six (6) months of the completion of the last acceptable calibration test.
- c. Stand for which a lapse in calibration is not greater than two years.
 - The first operationally valid calibration test run on any approved reference oil must have no stand Shewhart severity alarm using the "Reduced K" values. If the first operationally valid calibration test does not meet this acceptance criteria, then the New Test Stand criteria listed above in 1.a must be followed.

2. Existing Test Stand

 The test stand must have been an ASTM TMC calibrated test stand prior to LTMS introduction or have previously been accepted into the system by meeting LTMS calibration requirements.

23-2 08-2020

- Exceed EWMA test stand chart limit for precision (critical parameter only)
 - Immediately provide written notice of the alarm and its meaning to all Test Purchasers and the TMC. This notice shall be appended to all test reports for the stand in question during the alarm period.
 - Exceed Shewhart test stand chart limit for precision (critical parameter only)
 - Immediately provide written notice of the alarm and its meaning to all Test Purchasers and the TMC. This notice shall be appended to all test reports for the stand in question during the alarm period.
 - Exceed EWMA laboratory chart action limit for severity (all parameters)
 - Calculate laboratory Severity Adjustment (SA) using the current laboratory EWMA
 (Z_i) as follows:

```
Soot at 4.0 cSt Viscosity Increase: SA = (-Z_i) \times (0.20)
Soot at 12.0 cSt Viscosity Increase: SA = (-Z_i) \times (0.50)
Soot at 15.0 cSt Viscosity Increase: SA = (-Z_i) \times (0.61)
MRV Viscosity: SA = (-Z_i) \times (0.117)
```

- Confirm calculation with the TMC.
- Exceed EWMA test stand chart limit for severity (critical parameter only)
 - Notify the TMC. If the direction of the test stand severity is deemed different from that of the test laboratory, conduct an additional calibration test in the identified test stand. If this limit is still exceeded after the additional calibration test, then remove test stand from the system, notify the TMC, correct test stand severity problem, and follow requirements for entry of a new test stand into the system.
- Exceed Shewhart test stand chart limit for severity (critical parameter only)
 - Conduct an additional calibration test.

The following industry issues are handled by the TMC and do not require individual laboratory action.

- Exceed EWMA industry chart action limit
 - TMC to notify test developer, surveillance panel chairman, and ACC Monitoring Agency. Meeting of TMC, test developer, and surveillance panel required to determine course of action.

23-4 08-2020

	T-11 Reference Oil Targets										
		Effective	e Dates	Soot @ 4.0	cSt Vis. Inc	Soot @ 12	.0 cSt Vis. Inc	Soot @ 15.0	MRV Viscosity		
Oil	n	From	To ¹	$\overline{\mathbf{X}}$	S	$\overline{\mathbf{X}}$	S	\overline{X}	S	\overline{X}	S
820-2	32	3-8-03	***			5.78	0.21			14969	1097
820-2	16	5-28-05	5-31-10	3.81	0.23	5.78 ²	0.21^{2}	6.36	0.26	14969 ²	1097^{2}
	3	6-1-10	***	3.95	0.30	5.92	0.22	6.51	0.20	14981	916
820-3	11	9-7-07	***	3.95	0.30	5.92	0.22	6.51	0.20	14981	916
822-1	4	2-1-2013	7-2-2013	3.99	0.21	5.65	0.54	6.35	0.66	14408	314
	8	7-3-2013	***	4.09	0.20	5.81	0.50	6.48	0.61	13948	584
822-2	8	1-1-2014	7-29-2020	4.09	0.20	5.81	0.50	6.48	0.61	13948	584
	57	7-30-2020	***	4.09	0.20	5.81	0.50	6.48	0.61	13948	1156

A-29 08-2020

^{1 *** =} currently in effect
2 Value based on earlier data set (n=32)
3 Targets based on oil 820-3

HISTORY OF SEVERITY ADJUSTMENT (SA) STANDARD DEVIATIONS (Continued)

			Effectiv	e Dates
Test	Parameter	S	From	To
ICD	Camshaft Wear	8.7	20171129	***
ISB	Tappet Wt. Loss	14.8	20171129	***
	X-Head Wear	None		
ICM	OFDP	None		
ISM	Average Sludge	None		-
	Adj. Screw Wear	None		
		1.19	19940401	19960930
	Via Inc. © 2.00/	0.93	19961001	19990131
T-8	Vis. Inc. @ 3.8%	0.90	19990201	20070524
		0.00	20070525	20110916
		0.56	20110917	***
	D 1 W: (2) 4 00/	0.26	19970127	20070524
TE OF	Rel. Vis. @ 4.8% — 50% DIN Shear —	0.00	20070525	20110916
T-8E	3070 DIN Sileai	0.08	20110917	***
	Rel. Vis. @ 4.8%	0.27	20020306	20070524
	100% DIN Shear	0.00	20070525	20110916
		0.09	20110917	***
	Soot@4.0 cSt Vis	0.23	20050528	20130702
	Soot@12.0 cSt Vis	0.21	20030308	20130702
	Soot@15.0 cSt Vis	0.26	20050528	20130702
	MRV Viscosity	1097	20030308	20130702
T-11	Soot@4.0 cSt Vis	0.20	20130703	***
	Soot@12.0 cSt Vis	0.50	20130703	***
	Soot@15.0 cSt Vis	0.61	20130703	***
	MRV Viscosity	584	20130703	20200729
	MRV Viscosity	1117	20200730	***

C-4 08-2020

APPENDIX D REFERENCE OIL VISCOSITY GRADES

Oil	SAE Viscosity Grade	Date Received ¹
52	15W-40	19950830
55	10W-30	19950918
58	5W-30	19981001
62	10W-40	19960304
66	15W-40	20020418
75	5W-30	20101007
90	15W-40	20050922
91	5W-20	20060814
112	90	19940221
112-1	90	19940621
112-2	90	19951127
113	90	20021113
114	90	19940222
114-1	90	19970617
115	80W-90	19971103
116	80W-90	20050415
116	80W-90	20050418
117	80W-90	20130819
121	90	19960329
121-1	90	19970303
121-2	90	19990930
123	90	19950116
123-1	90	19991029
123-2	90	20010723
127	80W-90	19930819
128	80W-90	19930820
128-1	80W-90	19960209
128-2	80W-90	20010725
129	90	19930823
131	85W-140	19850924
131-1	85W-140	19860318
131-2	85W-140	19880126
131-3	85W-140	19911025
131-4	85W-140	19950315
133	85W-140	19981013
134	80W-90	20070926

D-1 08-2020

Oil	SAE Viscosity Grade	Date Received ¹
134-1	80W-90	20151106
143	80W-90	19891009
148	80W-90	19930713
148-1	80W-90	20010927
150	80W-90	19930603
150-1	80W-90	19940430
150-2	80W-90	19950510
151	80W-90	19930520
151-1	80W-90	19940503
151-2	80W-90	19950727
151-3	80W-90	19990929
152	75W-90	20040223
152-1	75W-90	20040927
152-2	75W-90	20090915
152-2A	75W-90	2009915
152-2B	75W-90	20090821
152-3	75W-90	20110627
153	75W-90	20040213
153-1	75W-90	20040913
154	90	20050905
155	90	20050510
155-1	90	20101123
155-2	90	20200708
160	80W-90	19920925
160-1	80W-90	19960328
161	75W-90	19930104
161-1	75W-90	19951003
162	80W-90	19921015
168	80W-90	20050721
169	75W-90	20100602
170	80W-90	20150819
171	80W-90	20170331
221	0W-16	20151202
222	10W-30	20151215
224	5W-30	20180524
270	5W-30	20150708
271	5W-30	20151009
433	5W-30	20000713
433-1	5W-30	20000928

D-2 08-2020

Oil	SAE Viscosity Grade	Date Received ¹
433-2	5W-30	20130306
434	5W-30	20030303
434-1	5W-30	20080512
434-2	5W-30	20140228
434-3	5W-30	20170718
435	5W-20	20030313
435-1		20080904
	5W-20	
435-2	5W-20	20100902
436	5W-20	20141105
438	5W-20	20030302
438-1 (538-1)	5W-20	20070212
438-2	5W-20	20170922
538	5W-20	20010622
538-1	5W-20	20070212
539	10W-30	20020308
540 (GF5A)	5W-20	20090106
541 (GF5D)	10W-30	20081211
541-1	10W-30	20110405
542 (GF5X)	0W-20	20081215
542-1	0W-20	20130109
542-2	0W-20	20141007
542-3	0W-20	20151006
542-4	0W-20	20181212
543	0W-16	20150925
544	5W-30	20151007
704	10W-30	19910131
704-1	10W-30	19920114
809-1	15W-40	19910402
810-1	15W-40	19890920
810-2	15W-40	19921214
811-1	15W-40	19900419
811-2	15W-40	19950921
820 (PC-9A)	15W-40	20001016
820-1	15W-40	20011005
820-2	15W-40	20011130
820-3	15W-40	20060828
821 (PC10E)	15W-40	20050307
821-1	15W-40	20071105
821-2	15W-40	20090327
821-3	15W-40	20120807
821-4	15W-40	20131220
822	15W-40	20120828
822-1	15W-40	20130125

D-3 08-2020

Oil	SAE Viscosity Grade	Date Received ¹
822-2	15W-40	20130722
823 (PC11A)	10W30	20150521
830 (PC-9E)	15W-40	20001109
830-1	15W-40	20020107
830-2	15W-40	20020401
830-3	15W-40	20161221
831 (PC10B)	15W-40	20050330
831-1	15W-40	20070710
831-2	15W-40	20111128
831-3	15W-40	20150317
831-4	15W-40	20170217
832 (PC11G)	15W-40	20150521
832-1	15W-40	20180524
833 (PC11K)	15W-40	20150325
833-1	15W-40	20170619
864 (X)	5W-30	20160520
864-1	5W-30	20160705
866 (C)	10W-30	20160609
873	40	19930728
873-1	40	19940214
873-2	40	20020313
925	5W-30	19870123
925-1	5W-30	19880216
925-2	5W-30	19900614
925-3	5W-30	19930608
940	5W-30	20120425
940-1	5W-30	20180605
1004-2	15W-40	19941216
1004-3	15W-40	19960508
1005	15W-40	19960229
1005-1	15W-40	19980121
1005-2	15W-40	20030926
1005-3	15W-40	20090928
1005-4	15W-40	20120731
1005-5	15W-40	20150116
1006	5W-30	19961014
1006-1	5W-30	20000907
1006-2	5W-30	20001026
1007	5W-30	19980424
1008	5W-30	19980601
1008-1 1009	5W-30 5W-30	20020318 20020307
1009	5W-30	20020307
1010	5W-20	20100824
1010-1	5W-20	20141016

D-4 08-2020

Oil	SAE Viscosity Grade	Date Received ¹
1011	0W-16	20150413
1011-1	0W-16	20190924
1012	5W-20	20170126
FOAMB18	5W-20	20180111
GIA17	10W-30	20171220
VOLC12	5W-30	20130214
VOLD12	0W-20	20130218
VOLE12	5W-20	20130218

¹ Date received into TMC warehouse.

D-5 08-2020