Sequence IX Oil Aging Data Review

Statistics Group

May 29, 2020

Statistics Group

- Doyle Boese, Infineum
- Jo Martinez, Oronite
- Todd Dvorak, Afton
- Rich Grundza, Test Monitoring Center
- Travis Kostan, Southwest Research Institute
- Min Chen, Exxon Mobil
- Phil Scinto, Lubrizol

Executive Summary

- Significant differences between test Laboratories for KV100 and KV40 parameters
 - KV40, KV100, Oxidation, and Nitration tends to be higher for Lab A as compared to the other 2 labs (B & G).
 - Significant differences could be due to engines as compared to test labs (lab and engine factors are confounded)
- Significant differences in TBN, TGA, Mg, and Ca for Oils A and B
- With Laboratory and Aged Oil terms in the model, no outliers were identified in the data set

Sequence IX Test Oils – Results from Aging Tests

- All Analytical Measurements were performed at the same test lab
- Total Number of Tests = 6
- Number of Labs = 3
 - A, B, and G
- Number of Aged Oils = 2
 - Oils A and B

Used Oil Data Summary:

Obs	Oil Code	Lab Code	Ltmslab	Oil	Oil Type	Ag	Al	В	Ва	Са	Cr	Cu	Fe	Κ	Mg	Mn	Мо	Na	Ni	Р	Pb	Si	Sn	Ti	٧	Zn	Nitratior
1	OS366228C		G	А	Aged	0	1	44	1	1431	0	16	7	2	795	1	1	2	0	727	0	78	0	0	0	807	14.31
2	OS366229C		G	В	Aged	0	1	31	0	1993	0	12	8	7	8	0	746	4	0	667	0	152	1	0	0	744	13.93
3	OS366228C	OS612905, 16-09,C,015	В	Α	Aged	0	1	50	1	1441	0	11	8	3	779	1	0	0	0	704	0	21	1	0	0	752	15.75
4	OS366229C	OS612997	В	В	Aged	0	1	38	0	1977	0	21	6	2	6	1	748	1	0	675	0	25	1	0	0	750	11.92
5	OS366228C	LO-396288	Α	Α	Aged	0	1	35	0	1442	0	13	6	2	812	0	1	9	0	729	0	40	0	0	0	816	19.85
6	OS366229C	LO-396289	Α	В	Aged	0	1	45	1	2008	0	15	8	1	6	0	749	2	0	718	0	44	1	0	0	800	14.42

Fresh Oil Data Summary:

		D2270		D4683	D5293	D2896	D4739		D664		Elemental Analysis					
		KV at 40C	KV at 100C	HTHS	CCS at -35C	TBN	TBN (Buffer)	TBN (Inflection)	TAN (Buffer)	TAN (Inflection)	В	Ca	Mg	Mo	Phos	Sulfur
Oil	Oil Code	(cSt)	(cSt)	(cP)	(cP)	(mg KOH/g)	(mg KOH/g)	(mg KOH/g)	(mg KOH/g)	(mg KOH/g)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
Α	OS366228C	36.4	8.8	2.6	3291	9.4	7.2	7.6	2.74	2.69	216	1304	863	0	756	2796
В	OS366229C	36.4	8.8	2.7	3420	7.3	5.4	5.6	3.97	2.79	236	1948	0	776	766	3661

Nitration & Oxidation

5

Kinematic Viscosity

Desc.	Mean(KV100)	Std Dev(KV100)	Mean(KV40)	Std Dev(KV40)
Aged Oil A	7.32	0.13	31.60	0.75
Aged Oil B	7.33	0.15	31.35	0.63

TAN & TBN

Desc.	Mean(TAN)	Std Dev(TAN)	Mean(TBN)	Std Dev(TBN)
Aged Oil A	2.70	0.26	5.03	0.21
Aged Oil B	2.90	0.10	2.50	0.20

7

TGA Soot & Fuel Dilution

Ca & Mg

9

Model Regression Summary

	P-values													
Model Term	TAN	TBN	Nitration	Oxidation	KV100	KV40	TGA	Fuel Dil	Mg	Ca				
Laboratory {A, B, G}	0.1875	0.62	0.3325	0.3425	0.0049	0.0309	0.1364	0.5	0.5012	0.4784				
Aged Oil {A, B}	0.1835	0.0053	0.1638	0.0703	0.7007	0.2171	0.0186	0.7418	0.0001	0.0003				
		a a=\												

Statistically Significant (p-values < 0.05)

- Significant differences between test Laboratories for KV100 and KV40 parameters
- Significant differences in TBN, TGA, Mg, and Ca for Oils A and B
- With Laboratory and Aged Oil terms in the model, no outliers were identified in the data set